CMS File Transfers and Service Challenge 3

Lassi A. Tuura Northeastern University

Talk structure

- CMS data management
 - * Data management concepts
 - * Data transfer component
 - Current operations
- Introduction to PhEDEx
 - Mission and Context
 - Design overview
 - Main components
 - Transfer handshake
 - Current Issues
- Service Challenge 3
 - CMS transfers
 - Site services
 - Schedule

Crash course on CMS data management

CMS data management
Data management concepts

- Logical data organisation: online stream primary dataset — dataset / data tier — event collection
 - * Input to an application: a subset of dataset's event collections
 - * Data management edge is event collection, data processing applications are required to look into details smaller than that
 - * Placement of bulk data driven by policy and subscriptions
- Physical data organisation: site block file
 - ★ Datasets broken down to blocks of O(5-10 TB)/O(1k-10k) files
 - * Basic unit of experiment-wide data / storage management
- Main components
 - * Dataset bookkeeping system: data organisation
 - * Data location index: index of blocks at sites
 - * Data transfer system: *this presentation*

Overall data flow

- * Detector data to Tier 1s, safe storage on tape, large-scale processing
- * Processed data to Tier 2s, smaller-scale analysis
- * Simulation and analysis results from Tier 2s cached at Tier 1s
- Overall infrastructure
 - * Core infrastructure is a stable set of Tier 0, Tier 1 and Tier 2 sites
 - Dynamic infrastructure typically Tier 2 and smaller sites that are transient — each associating with a larger site

CMS data management Data transfer component

PhEDEx is CMS component for data transfers

- * Manages transfers from multiple sources to multiple destinations
- * Provides cost/latency/rate estimates for scheduling

Main characteristics

- * Oriented for dataset blocks, not just files
- * Asynchronous transfers by agents
 - Not by hand, bulk, or on-demand by job access
- * Based on storage overlay network
 - Tape and disk storage nodes in a transfer graph
 - Factor in transfer policy using routing
 - End-to-end transfers, not just single hop
- # Grid- and other technology agnostic

CMS data management Current operational sites

7 large sites: FNAL, CERN, INFN-CNAF, PIC, RAL, FZK, IN2P3; ASCC (Taiwan) coming onboard soon

* Inbound transfers for all, export from CERN, FNAL, others testing

- Number of Tier-2 and other smaller sites, some testing
 - Spain (CIEMAT), Italy (Bari, Bologna), U.S. (UCSD, Florida, Wisconsin, Caltech, Purdue, MIT), U.K. (Imperial), NorduGrid (Finland, Estonia), Pakistan (NCP), Taiwan (NCU)

CMS data management Current operational data

- Production: ~70 TB known, ~150 TB total replicated
- ▶ SC2: 1.6 PB 1.6M replicas of 40 files (!)
- Test instances: 2 x testbed, integration test, castor test

CMS data management Current operational transfers

CMS data management Current operational transfers

FNAL_Transfer T2_Caltech_Buffer T2_Purdue_Buffer T2_Florida_Buffer T2_Wisconsin_Buffer

Introduction to PhEDEx

Introduction to PhEDEx Mission

- ▶ PhEDEx started just before CMS DC04, ~ 1 year go
- Many solutions to data distribution in HEP experiments
 - * Nothing directly met CMS requirements
 - * Grid- and technology agnostic: respect local choices
 - But avoid solution proliferation too
 - * Leverage existing experience and services that really work
 - * Retain agility to evolve, replace technology and layers

Context

- CMS requirements
- * Other systems

Introduction to PhEDEx CMS Requirements

- Managed and structured data flow
 - * Not everyone can connect to detector facility, manage resource load
 - * Distribution topology not fully connected: hybrid tree-mesh-star
 - * Automate more sophisticated Tier 1 roles
 - Permanent safe storage of raw data copy
 - Serving raw and reprocessed data to Tier 2 sites
 - Data custody and caching of data produced or destined elsewhere
 - * Higher-level view of multi-step transfers: tape, disk, disk, tape/disk, disk
 - * Buffer management: only delete when files safe at destination
 - * Ensure files have reached all destinations and custodial storage
 - * High-level view of replica processing: stored on tape, checksummed, ...
- Different data transfer modes
 - * Push from detector to T1 tape; pull for requests, output harvesting
- Autonomous operation without continuous operator attention
- Different actors and systems: manage priority competition
 - * Collaboration, physics groups, individuals; Tier 0 to laptop

Introduction to PhEDEx Other Systems

- SAM(Grid) for CDF, D0
 - Strongly couples many aspects of experimental operation: dataset bookkeeping and auditing, transfers, workload management
 - * Large scale data movements handled
 - Moves data in response to user demand
- EDG for LHC experiments and others
 - Much research into optimized on-demand replica management
 - * No production-quality automated data management
 - Still only point-to-point, download-your-own
- CondorG + Stork
 - * Again, coupled workload and data management
 - * No automated data management, no background continuous data flow
- ATLAS Don Quixote + new reliable file transfer service
 - * Parallel development with slightly different emphasis in detail?
- EGEE gLite: See later

Introduction to PhEDEx
Design overview

- Separation of data management layers
 - * Dataset-level transfer management
 - * Data hierarchy means to scale performance
 - * Routed multi-hop transfers: topology, replica choice, policy
 - Reliable point-to-point transfers: transfer handshake
 - All transfer tools treated as fundamentally unreliable
- Local information stays local
 - Deletion or other file loss are not local
 - * PFN, paths, host names, catalogues are local information
- Agent-based
 - * Complex functionality in discrete, lightweight and disposable units
 - * Minimal handover between units at clearly specified points
 - * Autonomous and peer-to-peer computing benefits
- Two overlay networks: a) *storage overlay* with IP-style routing where node = storage, edge = transfer step, edge state = progress, b) *agent communication overlay*, today via central database

Introduction to PhEDEx Main components / layers

Request management- dataset level transfers

Scalable management and monitoring of transfer requests. Automated allocation of files to destinations to fulfill requests. Dynamic routing alterations to avoid problems. Automatic harvesting of files; bulk transfer requests for existing data.

Reliable routed, or multi-hop, transfer

Efficient handover of responsibility from node to node in a transfer chain. Manage clustering of tape stages and migrations. Determination of closest/ best replica for transfer.

Reliable point-to-point, or single hop, transfer

Failure recovery and retry of transfers.

+ Higher levels: transfer request management and tracking

Unreliable point to point transfers and technologies

srmcp, globus-url-copy, lcg-rep, dccp srm, gsiftp, dCache

Introduction to PhEDEx Life of a transfer

- Before the transfer
 - * NodeRouters maintain transfer topology, time out dead nodes / routes
 - * FileAllocator assigns files to destinations using subscriptions
 - * For each file destination assignment, destination FileRouter finds best replica and creates single-hop transfer assignments
- The transfer assignment
 - * States: assigned, wanted, available, in transfer, completed, error
 - ***** Everything is a pull: dead sites are ignored (except allocation failover)
 - Wanted = sliding window to allow exporting side plan stage-in
 - * Available = exporter tells file on disk, provides transfer URL
 - * Configurable number of parallel transfers, can use copyjobs
 - * Evaluate transfer success: compare file size, possibly checksum
- After transfer
 - * Failed: back off, tick error counts, schedule for later retry
 - * Success: hand over locally (CMS: publish to catalogue), route next hop

Introduction to PhEDEx Other properties

- General assumption: every operation will fail
 - * Surprisingly accurate estimate, innumerable errors exposed in tools
 - * Assume most errors are transient: disk full, network down, ...
 - Log an alert, back off, retry later

Designed to be tested

- ***** Just about every operation and component can be faked out
 - Useful for both testing and what-if analysis
 - Laptop development and testing fully plausible
- * Test everything on developer testbed, then in integration testbed
 - Production system "switched over overnight" after integration
- * Regularly used for validation testing of other components
- Rich amount of tracking information, monitoring
 - * Transfer history for rate and progress estimation
 - * Agents log output to disk in semi-standard formats for summaries
 - Now also testing distributed access to the logs for remote monitoring

Introduction to PhEDEx EGEE gLite

Request management- dataset level transfers Scalable management and monitoring of transfer requests. Automated allocation of files to destinations to fulfill requests. CMS specific Dynamic routing alterations to avoid problems. management Automatic harvesting of files; bulk transfer requests for existing da layers Reliable routed, or multi-hop, transfer Efficient handover of responsibility from node to node in a transfe-Manage clustering of tape stages and migrations. Determination of closest/ best replica for transfer. Reliable point-to-point, or single hop, transfer Failure recovery and retry of transfers. EGEE gLite File Transfer Unreliable point to point transfers and technologies Service? srmcp, globus-url-copy, lcg-rep, dccp srm, gsiftp, dCache

Introduction to PhEDEx Future directions

- Database and agent topology
 - * Database deployment improvements
 - * Peer-to-peer overlay for data location, transient / small nodes

Dynamic contractual file routing

- Request/tender with time validity
- * Choose best replica, handle failing routes, congestion

Priority and policy

- * Function of collaboration, site and data requestor priorities
- * Overall path priority, local transfer priorities, buffer management
- Semi-autonomy and interaction with fabric management
 - * Respond to local conditions and adapt
 - * Detect and message on catastrophic failure
- Continued technology testing, what-if analysis

Introduction to PhEDEx **Current issues**

- PhEDEx is CMS production data transfer system
 - Maturing now, large-scale transfers are getting simpler
 - * Able to sustain TB/day+ transfers, PhEDEx not bottleneck (1%, max 10)
 - Most sites beginning to keep agents up much of the time unattended
 - * TMDB only current single point of failure
- Observations, major focus required
 - * Underlying infrastructure is maturing slowly
 - At any one time 1/3 of the transfer system is usually down
 - Good news: transfers don't stop, local management possible
 - * Exporting data is much harder than importing it
 - Very difficult to play fair with current Castor at CERN
 - SRM-to-SRM transfer incompatibilities
 - Every site has a different infrastructure configuration
 - * Exporting, importing and serving data simultaneously painful
 - Poorly understood issues with just importing!
 - Disk-to-disk is only so interesting, we are already doing tape-to-tape...

Service Challenge 3 (Preliminary)

Service Challenge 3 CMS transfers

- PhEDEx will be used for SC3 CMS transfer tests
 - * Available to help set up if others have interest
 - * Not the only CMS service that needs setting up at the sites
- Transfer features expected to be tested
 - * Simultaneous data import, export and serving for local processing
 - Must be representative of real experiment data flow
 - Must use realistic files and realistic storage
 - This will become the next production service, right?
 - To/from tape at least on some Tier 1 sites
 - We are working on file size
- Cannot afford to fail
 - Suggest testing a couple of different configurations according to region/site preferences: SRM-SRM transfers, GridFTP only, FTS
 - ***** EGEE FTS not a high priority for CMS, may be for some sites?
 - Risk for using for all sites is too high, not clear why for e.g. U.S.

Service Challenge 3
Site services

- Transfers: import and export
 - * For CMS tests, using PhEDEx installation at site

Serving data to bulk data processing applications

- Simulated and/or real applications
- * This requires several other services to be available
 - Computing element, job submission, output harvesting for transfer, software installation + publishing into the information system, bookkeeping / monitoring databases for production, file catalogue, PubDB or successor
- The above are expected to be available concurrently
 - * Throughput phase: concurrent import/export transfers only
 - * Service phase: all, but top throughput not required

Service Challenge 3 Schedule

- CMS will participate in the "early phase" (cf. Jamie)
- July: throughput phase
 - * T0/T1/T2 simultaneous import/export
 - To and from tape at T1s
 - Real files, real storage
- August: setup phase
 - * Agents work while we all enjoy our holidays?
- September: service phase 1 modest throughput
 - * Demonstrate bulk data processing, simulation at T1, T2s
 - Requires software, job submission, output harvesting, monitoring, ...
 - Not everything everywhere, something reasonable at each site
- November: service phase 2 modest throughput
 - * Phase 1 + continuous data movement
 - * Precursor for next production service

Summary

- Data transfers is a substantial topic
 - * The interesting world is beyond "SRM-or-FTS?"...

CMS has a production data transfer system

- Many major and smaller sites already involved
- * Handles large scale continuous transfers, mostly on background
- Relatively low overhead
- * Planning next steps
- Significant amount of work to ramp up everything
 - Major issues remain to be sorted out
 - * That's why we are here, doing service challenges
 - * That's why CMS visit sites directly for technical contact
 - * We have to press on, service challenge or not
 - It's an exciting time, but have to move swiftly :-)

More Information

PhEDEx

- * http://cern.ch/cms-project-phedex
 - In particular: "Documentation", "Monitoring", "Wiki"
 - Want to test? There are deployment and tuning guides...
 - More details in Tim Barrass' presentation last Monday (April 4)
- * cms-phedex-developers@cern.ch
- CMS data management
 - * Project leader: Peter Elmer <peter.elmer@cern.ch>
 - * cms-dm-developers@cern.ch