

CERN 25 January 2005

ATHENA

Study of the Anti-hydrogen production mechanisms

Overview of the results

Alberto Rotondi Pavia University

ATHENA Collaboration

ATHENA main results

- 1) "Production and detection of cold antihydrogen atoms" Nature 419 2002 456
- 2) "Positron plasma diagnostic and temperature control for antihydrogen production" Phys. Rev. Lett. 91 2003 05501
- 3) "Complete non destructive diagnostic of non neutral plasmas based on the detection of the electrostatic modes" Phys. Plasmas 10 2003 3056
- 4) "The ATHENA antihydrogen apparatus" NIM A 518 (2004) 679
- 5) "Three dimensional annihilation imaging of trapped antiprotons" Phys. Rev. Lett 92 (2004) 065005
- 6) "High rate production of antihydrogen" Phys. Lett. B 578 (2004) 23
- 7) "Dynamics of antiproton cooling in a positron plasma during antihydrogen formation" Phys. Lett. B 590(2004)133
- 8) "Antihydrogen production temperature dependence" Phys. Lett. B 583 (2004) 59
- 9) "Spatial distribution of Cold Antihydrogen Formation " accepted on Phys. Rev. Lett.
- 10) "Transfer, Stacking and Compression of Positron Plasmas" submitted
 - dependence of the antihydrogen formation on plasma dimensions, temperature and density
 - identification of the main recombination mechanisms (radiative vs 3body)
 - to enhance radiative recombination by laser radiation

ATHENA overview

- Transfer positrons from accumulator into mixing trap (ϵ ~ 50 %)
- Positrons cool by synchrotron radiation at B=3T: 75 million cold positrons
- Non-destructive diagnostics gives plasma parameters:

 $R = 2.0 \text{ mm} \text{ L} = 32 \text{ mm} \text{ n} = 2 \cdot 10^8 \text{ cm}^{-3}$

- Positrons life time ~ many hours
- Caught antiprotons: 10 000 (3 AD shots), cooling by electrons in 20 s
- Annihilation detection by the antihydrogen detector
- No positron heating: cold mixing (Hbar production)@15 K
- Controlled positron heating: hot mixing (background)

From the ATHENA detector

Athena Collaboration, Phys. Rev. Lett. 92, 065005 (2004)

XY projection

ZY projection

Opening angle distribution

AVEHTA ni noitoulorg H

(Re)combination mechanisms

	Radiative Recombination	Three-Body Recombination	
Principle	e ⁺ ••••••••••••••••••••••••••••••••••••	e+	
Temperature depend.	∞ T -2/3	$\propto T^{-9/2}$	
e ⁺ density dependence	$\propto n_e$	$\propto n_e^2$	
Final internal states	<i>n</i> < 10	<i>n</i> >> 10	
Expected rates	few 10 Hz	unknown	
[J. Stevefelt et al., PRA 12 (1975) 12	vefelt et al., PRA 12 (1975) 1246] [M. E. Glinsky et al., Phys. Fluids B 3 (1991) 1279]		

Predicted 2-body annihilation peak rate (first 10 ms):

$$R_{rad} = N_{\bar{p}} n_{e^+} \left[\frac{m}{2\pi kT} \right]^{3/2} \int v \,\sigma_{rad}(v) \,\mathrm{e}^{-mv^2/2kT} \,\mathrm{d}^3 v \,\, < 40 \,\,\mathrm{Hz}$$

$\begin{array}{l} \textbf{Observed:} \\ \textbf{440} \pm \textbf{40} \ \textbf{Hz} \end{array}$

A 3-body MC for the ATHENA trap

F. Robicheaux PHYSICAL REVIEW A 70, 022510 (2004)

Standard antihydrogen production

Antihydrogen balance sheet:

Cold Mixing 2002	Cold Mixing 2003	
341	416	
180 s	70 s	
61 400 s	29 100 s	
2 924 000	5 065 000	
494 000	704 000	
16.9%	13.9%	<mark>33%</mark>
8.0(4) Hz	24.2(1.3) Hz	
65(5)%	74(3)%	
	Cold Mixing 2002 341 180 s 61 400 s 2 924 000 494 000 16.9% 8.0(4) Hz 65(5)%	Cold Mixing 2002 Cold Mixing 2003 341 416 180 s 70 s 61 400 s 29 100 s 2 924 000 5 065 000 494 000 704 000 16.9% 13.9% 8.0(4) Hz 24.2(1.3) Hz 65(5)% 74(3)%

* 5% relative uncertainty

Data are in qualitative agreement with three body recombination

M.E.Glinsky &T.M.O'Neil, Phys.Fluids B 3(1991)1279, F.Robicheaux & D.Hanson PRA 69(2004)010701, F.Robicheaux, PRA 70(2004)022510

The Antihydrogen Z-distibution

FIG. 2: Axial \hat{H} distributions for cold mixing and mixing with e^+ heated by two different amounts (hot mixing subtracted, xy-cut applied). The dot-dashed line is a simple calculation of isotropic emission from the e^+ plasma volume. The distributions have been normalized to the same area.

The Z-distribution

- is independent of the plasma temperature
- is slightly enhanced in the axial direction

The H formation occurs from p not in thermal equilibrium

The Antihydrogen velocity

By assuming the \overline{p} capture from the rotating plasma (80 kHz) we obtain

$$\mathbf{T}_{\parallel} = (10 \pm 2) \mathbf{T}_{\perp}$$

By neglecting this effect we obtain

$$T_{\parallel} = (2.3 \pm 0.3) T_{\perp}$$

Assuming a plasma temperature of 15 K:

FIG. 3: Comparison of the axial distribution from cold mixing with a number of calculated distributions. Standard e^+ plasma parameters and E × B rotation were used except for the dot-dashed curve where $l_{e^+} = 60$ mm. Homogeneous formation in the plasma was assumed.

$$< v_{\parallel} > \approx 1100 \pm 100 \text{ m/s}$$

Accepted on PRL

(model dependent result)

Laser runs (2004)

- We used a CO₂ laser to stimulate the radiative transition from the continuum to the n= 11 state
- Wavelength: tunable 9.5<λ<11.2 μm. Used 10.96 μm (tried also 9.6 μm)
- Laser beam: power 15-30 W, waist of 2 mm, peak intensity 160 W/cm² at a 10 Watt power in the mixing region
- Recombination rate is not affected by the finite Doppler width for T=15K nor by the laser band width (100 MHz)
- Expected stimulated rate: > 60 Hz

The laser set-up

PZT: mirrors, **POW:** laser power meters **PSD:** position sensitive detectors for He-Ne (feedback for **PZT**)

The ON-OFF technique

- With the laser we measure a slight increase in temperature and no vacuum deterioration
- To assure the same conditions in the on-off laser measurements, the comparison has been made in the same run, by chopping the beam at a frequency of 25 Hz, with triggers recorded by DAQ
- In the following we will compare standard the Cold Mix runs with these laser runs in the 20 ms on-off mode

œ.

Time [ms]

These data have to be analyzed also as a function of the plasma conditions and transfer parameters. The work is in progress Results: opening angle

Radial distributions

Conclusions

- ATHENA produced and detected the first antihydrogen atoms in 2002
- Many aspects of the dynamic of the mixing in the Penning trap have been clarified
- The dependence of the antihydrogen formation on the temperature, size and density of the positron plasma has been studied in detail (crucial issue)
- Now the conditions to routinely produce antiatoms at an average rate of 10-30 Hz for a minute are known
- The high production rate supports the 3-body process as the main mechanism of recombination.
- The spatial distribution of the antihydrogen atoms has been obtained an their axial velocity has been deduced
- The stimulation of the radiative 2-body recombination with a CO₂ laser from the continuum to n=11 has been performed in 2004 and preliminary results have been shown.....