

Part 1

ASACUSA 2004

	Improveme	nts in 2004	
	AD Phase 1	Before 2004	2004
Natural width	0.1 - 100000 MHz	←	←
Collisional Shift	~500 MHz	<1 MHz	← RFQD
Collision width	~500 MHz	~1 MHz	
Doppler width	~500 MHz	←	Split by ~1/100
Laser band width beaware of chirp	800~2090 MHz	←	< 20 MHz (pulse amplified CW)
Calibration	10 - 60 MHz	←	~0 (frequency comb)
Achieved precision	60 ppb	10 ppb	work in progress
	PRL 87 (2001)	PRL 91 (2003)	

Efficiency

Ryugo S. Hayano

	# of pbars	survival fraction	note
AD	3 x 10 ⁷	000/	
RFQD	9 x 10 ⁶	30%	
Isolation foil	6 x 10 ⁶	20%	per AD shot
Captured	1.5 x 10 ⁶	5%	
Cooled	1.2 x 10 ⁶	4%	compression time
Extracted	5 x 10 ⁵	1.6%	
Delivered	3 x 10 ⁵	1%	shots

the University of Tokyo

Aus	tria
	M. Carnelli, H. Fuhrman, J. Marton, <u>E. Widmann,</u> J. Zmeskal
	Stefan Meyer Institut für subatomare Physik, Boltzmanngasse 3, 1090 Vienna, Austria
Den	mark
	H. Knudsen, P. Kristiansen, U. I. Uggerhoj
	Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C, Denmark
	S.P. Møller Institute for Storage Ring Facilities (ISA), University of Aarhus, DK-8000 Aarhus C, Denmark
	H.H. Andersen
	Niels Bohr Institute, Blegdamsvej 17, DK-2100 København Ø, Denmark
Ger	many
	T. Ichioka
	MPI für Kernphysik (MPI-K), Heidelberg, Saupfercheckweg 1, 69117 Heidelberg, Germany
Hun	gary
	D. Barna, D. Horváth, P. Zalán
	Research Institute for Particle and Nuclear Physics, H-1525 Budapest, Hungary
	B. Juhász, K. Tőkési
	Institute of Nuclear Research (ATOMKI), H-4001 Debrecen, Hungary
Italy	<i>y</i>
	M. Corradini, M. Leali, E. Lodi Rizzini, L. Venturelli, N. Zurlo
	Dipartimento di Chimica e Fisica per l'Ingegneria e per i Materiali, Università di Brescia, 25123 Brescia, Italy

Japan

A.J. Dax, J. Eades, R.S. Hayano, T. Ishikawa, K. Gomikawa, N. Ono, W. Pirkl, T. Yamazaki Department of Physics, University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

K. Komaki, Y. Nagata, H.A. Torii, Y. Yamazaki

Institute of Physics, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan and Atomic Physics Laboratory, RIKEN, Wako 351-01, Japan

Y. Kanai, N. Kuroda, A. Mohri, N. Oshima, M. Shibata, V. Varentsov, M. Wada Atomic Physics Laboratory, RIKEN, Wako 351-01, Japan

$\mathbf{Switzerland}$

M. Hori CERN, H-1211 Genève 23, Switzerland

United Kingdom

Department of Physics, University of Wales Swansea, Singleton Park, Swansea, SA2 8PP, UK

R. McCullough

M. Charlton

Dept. of Pure and Applied Physics, Queen's University Belfast University Road, Belfast BT7 1NN, UK

Part I: Continuation of the	Spectroscopy (CPT)	Antiprotonic helium atoms & ions	antiproton mass << 10 ⁻⁹ magnetic moment < 10 ⁻³
approved ASACUSA programme	Collision	Ionization & atom formation cross section	Use ultra-slow antiprotons extracted from the trap
Part II: Extending	Spectroscopy (CPT)	Antihydrogen ground-state hyperfine splitting	Sensitivity to CPTV higher than the K ⁰ system
ASACUSĂ programme	Collision	antiproton-nucleus cross section	Extend the LEAR measurements to much lower energies, relevant to fundamental cosmology

Part I: Continuation of the	Spectroscopy (CPT)	Antiprotonic helium atoms & ions	antiproton mass << 10 ⁻⁹ magnetic moment < 10 ⁻³
approved ASACUSA programme	Collision	Ionization & atom formation cross section	Use ultra-slow antiprotons extracted from the trap
Part II: Extending	Spectroscopy (CPT)	Antihydrogen ground-state hyperfine splitting	Sensitivity to CPTV higher than the K ⁰ system
ASACUSĂ programme	Collision	antiproton-nucleus cross section	Extend the LEAR measurements to much lower energies, relevant to fundamental cosmology

ready to run in 2006

hydrogen & helium ionization cross section

THE UNIVERSITY OF TOKYO

antiprotonic atom formation cross section

Ryugo S. Hayano

Part I: Continuation of the	Spectroscopy (CPT)	Antiprotonic helium atoms & ions	antiproton mass << 10 ⁻⁹ magnetic moment < 10 ⁻³
approved ASACUSA programme	Collision	Ionization & atom formation cross section	Use ultra-slow antiprotons extracted from the trap
Part II: Extending	Spectroscopy (CPT)	Antihydrogen ground-state hyperfine splitting	Sensitivity to CPTV higher than the K ⁰ system
ASACUSA programme	Collision	antiproton- <u>nucleus</u> cross section	Extend the LEAR measurements to much lower energies, relevant to fundamental cosmology

Part I: Continuation of the	Spectroscopy (CPT)	Antiprotonic helium atoms & ions	antiproton mass << 10 ⁻⁹ magnetic moment < 10 ⁻³
approved ASACUSA programme	Collision	Ionization & atom formation cross section	Use ultra-slow antiprotons extracted from the trap
Part II: Extending	Spectroscopy (CPT)	Antihydrogen ground-state hyperfine splitting	Sensitivity to CPTV higher than the K ⁰ system
ASACUSA programme	Collision	antiproton-nucleus cross section	Extend the LEAR measurements to much lower energies, relevant to fundamental cosmology

Beam Usage, 2006	
Experiments discussed in Part I	
Measurement	Number of weeks
Spectroscopy	
\bar{p} He two-photon spectroscopy, \bar{p} He ion (Part I, Sect. 1.1,1.2)	4
$\bar{\rm p}$ He hyperfine splitting (Part I, Sect. 1.3)	4
Atomic collision	
Ionization cross section (Part I, Sect. 2.3)	4
$\bar{p} A (Sec. 2.2)$	3
Subtotal	15
Experiments discussed in Part II	
Nuclear cross section (5 MeV beam: Part II, Sect. 2.2.1) allocation	to these 2
Antihydrogen GS-HFS (Part II, Sect. 1.1)	nto uill bo
Paul trap commissioning	
Cusp trap commissioning Increa	ised in 2
Subtotal comin	g years 6
Total	21