ASACUSA

Atomic Spectroscopy And Collisions Using Slow Antiprotons

Progress during 2004 and future plans

Ryugo S. Hayano, University of Tokyo Spokesperson, ASACUSA

Part 1

2004 Highlights

1. antiprotonic helium laser spectroscopy:
~10 fold improvement

2. $>30,000$ antiprotons @ 250 eV , slow-extracted over a period of 10 s

Antiprotonic helium - a closer look

Improvements in 2004

	AD Phase 1	Before 2004	2004
Natural width	$0.1-100000 \mathrm{MHz}$	\leftarrow	
Collisional Shift	$\sim 500 \mathrm{MHz}$	$<1 \mathrm{MHz}$	
Collision width	$\sim 500 \mathrm{MHz}$	$\sim 1 \mathrm{MHz}$	
Doppler width	$\sim 500 \mathrm{MHz}$	\leftarrow	Split by $\sim 1 / 100$
Laser band width beaware of chirp	$800 \sim 2000 \mathrm{MHz}$	\leftarrow	
Calibration	$10-60 \mathrm{MHz}$	\leftarrow	~ 0 (frequency comb)
Achieved precision	60 ppb	10 ppb	work in progress

PRL 87 (2001)

Improve laser band width and calibration

2004 result, preliminary

$593-\mathrm{nm}(505,222 \mathrm{GHz})$ resonance in helium3

status of theoretical calculations

Expected outcome

- Antiproton mass measured to ~ ppb (10-fold improvement)
- m(pbar)/m(e) may contribute to the fundamental constant

note: alpha mass/proton mass known to 0.13 ppb

2004 Highlights

1. antiprotonic helium laser spectroscopy:
~10 fold improvement

2. $>30,000$ antiprotons @ 250 eV , slow-extracted over a period of 10 s

Ultra-slow beam production scheme

Efficiency

	\# of pbars	survival fraction	note
AD	3×10^{7}	30\%	per AD shot
RFQD	9×10^{6}		
Isolation foil	6×10^{6}	20\%	
	6×10	5\%	
Captured	1.5×10^{6}	4\%	
Cooled	1.2×10^{6}		compression time
Extracted		1.6\%	
	5×10^{5}	1\%	every 3-5 AD
Delivered	3×10^{5}		shots

Part 2

FUTURE

Collaborating institutes and funding

	Tokyo RIKEN	MEXT, Japan RIKEN
	Aarhus	Danish natural science foundation, ISA
	RMKI Debrecen	OMFB TeT OTKA
CRN	CERN	STEFAN MEYER INSTITUTE
	Brescia	Austrian Academy of
Sciences		

Austria

M. Carnelli, H. Fuhrman, J. Marton, E. Widmann, J. Zmeskal

Stefan Meyer Institut für subatomare Physik, Boltzmanngasse 3, 1090 Vienna, Austria

Denmark

H. Knudsen, P. Kristiansen, U. I. Uggerhoj

Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C, Denmark
S.P. Møller Institute for Storage Ring Facilities (ISA), University of Aarhus, DK-8000 Aarhus C, Denmark
H.H. Andersen

Niels Bohr Institute, Blegdamsvej 17, DK-2100 København Ø, Denmark

Germany

T. Ichioka

MPI für Kernphysik (MPI-K), Heidelberg, Saupfercheckweg 1, 69117 Heidelberg, Germany

Hungary

D. Barna, D. Horváth, P. Zalán

Research Institute for Particle and Nuclear Physics, H-1525 Budapest, Hungary
B. Juhász, K. Tőkési

Institute of Nuclear Research (ATOMKI), H-4001 Debrecen, Hungary

Italy

M. Corradini, M. Leali, E. Lodi Rizzini, L. Venturelli, N. Zurlo

Dipartimento di Chimica e Fisica per l'Ingegneria e per i Materiali, Università di Brescia, 25123 Brescia, Italy

Japan

A.J. Dax, J. Eades, R.S. Hayano. T. Ishikawa, K. Gomikawa, N. Ono, W. Pirkl, T. Yamazaki

Department of Physics, University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
K. Komaki, Y. Nagata, H.A. Torii, Y. Yamazaki

Institute of Physics, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan and Atomic Physics Laboratory, RIKEN, Wako 351-01, Japan
Y. Kanai, N. Kuroda, A. Mohri, N. Oshima, M. Shibata, V. Varentsov, M. Wada

Atomic Physics Laboratory, RIKEN, Wako 351-01, Japan

Switzerland

M. Hori

CERN, H-1211 Genève 23, Switzerland

United Kingdom

M. Charlton

Department of Physics, University of Wales Swansea, Singleton Park, Swansea, SA2 8PP, UK
R. McCullough

Dept. of Pure and Applied Physics, Queen's University Belfast University Road, Belfast BT7 1NN, UK

Part I: Continuation	Spectroscopy (CPT)	Antiprotonic helium atoms \& ions	$\begin{aligned} & \text { antiproton mass } \ll 10^{-9} \\ & \text { magnetic moment }<10^{-3} \end{aligned}$
programme	Collision	Ionization \& atom formation cross section	Use ultra-slow antiprotons extracted from the trap
Part II: Extending ASACUSA programme	Spectroscopy (CPT)	Antihydrogen ground-state hyperfine splitting	Sensitivity to CPTV higher than the K^{0} system
	Collision	antiproton-nucleus cross section	Extend the LEAR measurements to much lower energies, relevant to fundamental cosmology

Antiprotonic helium atoms \& ions

- antiprotonic helium atom: 2-photon spectroscopy to eliminate the Doppler width (to reach $\ll 1 \mathrm{ppb}$)
- antiprotonic helium ion \rightarrow free from theoretical errors
- antiprotonic helium atom microwave spectroscopy: improve antiproton magnetic moment

electron spin
\uparrow antiproton spin
- HFS measurement, $726-\mathrm{nm}$ laser + 13GHz microwave, so far limited by laser
- with the new laser, accuracy improvement possible
- antiproton μ known only to 0.3%, ASACUSA 2001 was 1.6%
- In 2006 we will measure antiproton μ to $\ll 0.1 \%$

Part I:	Spectroscopy (CPT)	Antiprotonic helium atoms \& ions	$\begin{aligned} & \text { antiproton mass } \ll 10^{-9} \\ & \text { magnetic moment }<10^{-3} \end{aligned}$
programme	Collision	Ionization \& atom formation cross section	Use ultra-slow antiprotons extracted from the trap
Part II: Extending ASACUSA programme	Spectroscopy (CPT)	Antihydrogen ground-state hyperfine splitting	Sensitivity to CPTV higher than the K^{0} system
	Collision	antiproton-nucleus cross section	Extend the LEAR measurements to much lower energies, relevant to fundamental cosmology

Ionization, antiprotonic atom formation

so far deferred, waiting for the phase-3 beam development

ready to run in 2006

hydrogen \& helium ionization cross section

antiprotonic atom
formation cross section

Part I:	Spectroscopy (CPT)	Antiprotonic helium atoms \& ions	$\begin{aligned} & \text { antiproton mass } \ll 10^{-9} \\ & \text { magnetic moment }<10^{-3} \end{aligned}$
programme	Collision	Ionization \& atom formation cross section	Use ultra-slow antiprotons extracted from the trap
Part II: Extending ASACUSA programme	Spectroscopy (CPT)	Antihydrogen ground-state hyperfine splitting	Sensitivity to CPTV higher than the K^{0} system
	Collision	antiproton-nucleus cross section	Extend the LEAR measurements to much lower energies, relevant to fundamental cosmology

pbar-nucleus cross sections at low energies

- Use ASACUSA low energy beams to study systematics of pbarnucleus cross sections
- Relevance for fundamental cosmology

T>70 keV - annihilation before nucleosynthesis, T<3 keV after nucleosynthesis
why $A=3 \& A=20$
$\sigma_{\text {ann }}$ similar?
no anomaly @higher energy

why $A=2 \& A=4$
$\sigma_{\text {ann }}$ less than $A=1$?

Measurement strategy

- low-pressure gas target with a fast valve
- reconstruct (and count) annihilation vertices using a Scintillating Fiber Tracker
- ~10 events per shot
- slightly modified setup can be used in the $<1.5 \mathrm{keV}$ energy region (ultra-slow beam from the trap)

Fast valve($10 \mathrm{~ms}, \varnothing \sim 1.5 \mathrm{~cm})$

Part I: Continuation	Spectroscopy (CPT)	Antiprotonic helium atoms \& ions	$\begin{aligned} & \text { antiproton mass } \ll 10^{-9} \\ & \text { magnetic moment }<10^{-3} \end{aligned}$
programme	Collision	Ionization \& atom formation cross section	Use ultra-slow antiprotons extracted from the trap
Part II: Extending ASACUSA programme	Spectroscopy (CPT)	Antihydrogen ground-state hyperfine splitting	Sensitivity to CPTV higher than the K^{0} system
	Collision	antiproton-nucleus cross section	Extend the LEAR measurements to much lower energies, relevant to fundamental cosmology

(anti) Hydrogen GS-HFS and CPTV

CPTV in the SME framework

$$
\begin{gathered}
\left(i \gamma^{\mu} D_{\mu}-m_{e}-\sqrt[a_{\mu}^{e} \gamma^{\mu}-b_{\mu}^{e} \gamma_{5} \gamma^{\mu}]{-\frac{1}{2} H_{\mu \nu}^{e} \sigma^{\mu \nu}+i c_{\mu \nu}^{e} \gamma^{\mu} D^{\nu}+i d_{\mu \nu}^{e} \gamma_{5} \gamma^{\mu} D^{\nu}}\right) \psi=0 .
\end{gathered}
$$

- The CPTV parameters ($\boldsymbol{a} \& \boldsymbol{b}$) of the SME (Kostelecky et al.) are dimensionful
- Within SME, $\delta \mathrm{m} / \mathrm{m}$ comparison of CPTV sensitivity is not meaningful; must compare energy (frequency)
- $\delta \mathrm{m} / \mathrm{m} \sim 10^{-18}$ of K^{0} system $\Leftrightarrow 10^{5} \mathrm{~Hz}$;
relative accuracy 10^{-4} of GS-HFS $\left(\sim 1 \mathrm{GHz} \times 10^{-4}=10^{5} \mathrm{~Hz}\right)$ can be already competitive
note: K^{0} (sensitive to \boldsymbol{a}) and GS-HFS (sensitive to \boldsymbol{b}) cannot be directly compared the numbers above are to illustrate the order of magnitude involved

Temperature, velocity, rate (Monte Carlo)

Why need new Hbar production methods?

- Atomic-beam geometry works best if the source is point like
- Low temperature is desirable, but relatively high temperatures ($\mathrm{T}=50 \sim 150 \mathrm{~K}$) can be tolerated initially
- Nested Penning trap
typical source size $\sim 1 \mathrm{~cm}^{3}$ - too large
limited access (optical \& extraction), small solid angle, magnetic incompatibility
- Two-frequency Paul trap
technically challenging, but meets our requirements
- Cusp trap
source size larger, but polarized Hbar beam can eliminate the 1st sextupole

Proposed setup - overview

- RFQD
- SC Linear Paul trap (pbar capture)
- SC two-frequency trap (Hbar production)
- Sextupole \& 1.4GHz cavity
- positron source

Superconducting Linear Paul Trap

- This model will be tested using protons
- Cooling to superfluid 1.6 K
- demonstration of resistive cooling is essential

[^0]

Antihydrogen production in the two-tone trap

1): Antiproton injection

3): Positron injection

2): Antiproton trapping by 2 MHz RF field

4): Positron trapping

Only ground-state (or 2s) antihydrogen are emitted

An alternative method (cusp trap) under study

Beam Usage, 2006

Experiments discussed in Part I

Measurement	Number of weeks
Spectroscopy	
$\overline{\mathrm{p}}$ He two-photon spectroscopy, $\overline{\mathrm{p}}$ He ion (Part I, Sect. 1.1,1.2)	4
$\overline{\mathrm{p}}$ He hyperfine splitting (Part I, Sect. 1.3)	4
Atomic collision	4
Ionization cross section (Part I, Sect. 2.3)	4
$\overline{\mathrm{p} ~ A ~(S e c . ~ 2.2) ~}$	3
Subtotal	15

Experiments discussed in Part II
Nuclear cross section (5 MeV beam: Part II, Sect. 2.2.1) allocatioh to these 2 Antihydrogen GS-HFS (Part II, Sect. 1.1)

Paul trap commissioning
Cusp trap commissioning experiments will be

Paul trap commissioning	increased in	2
Cusp trap commissioning	cominq years	6
Subtotal		

Total	21

[^0]: (2)
 full-scale copper model (version 5)

