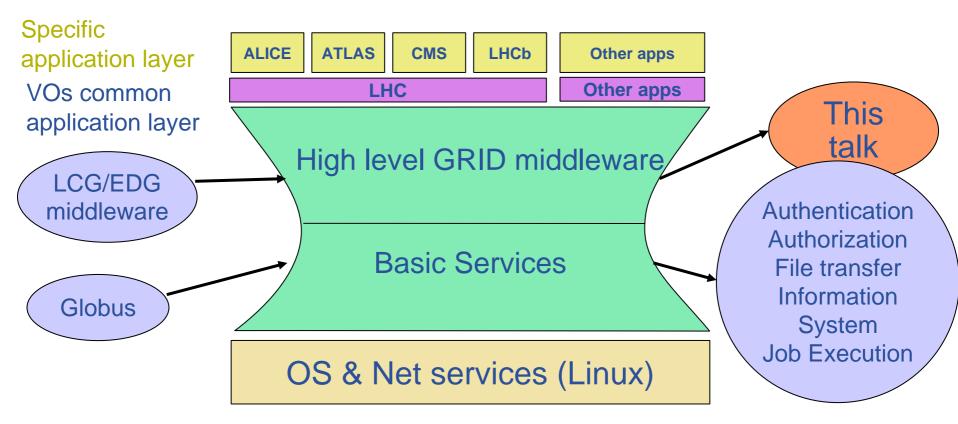


Enabling Grids for E-sciencE

Components of LCG-2

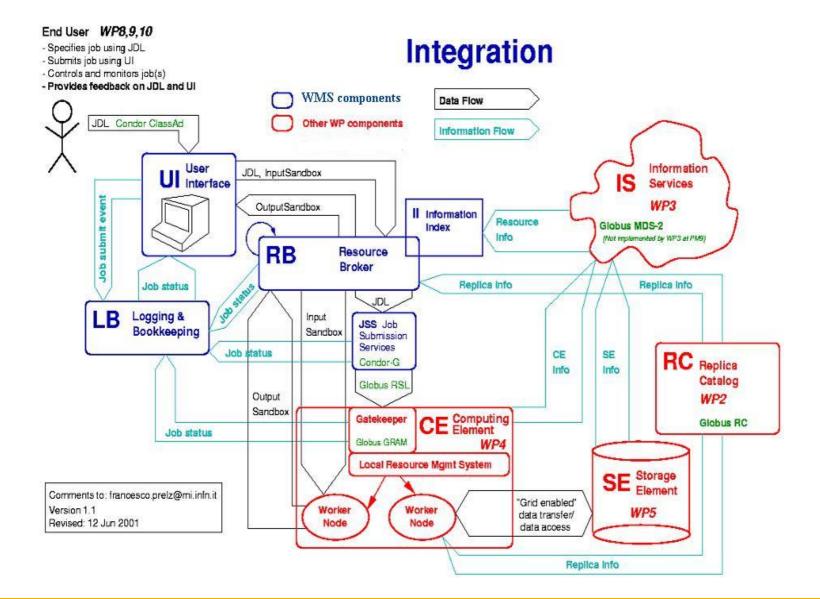
Christopher Jung, FZK, Karlsruhe

Slides contributed by Dr. Peer Hasselmayer, Ingrid Schäffner, Marcus Hardt and Dave Berry



www.eu-egee.org

The hourglass model


• LCG middleware keeps the grid together

eGee

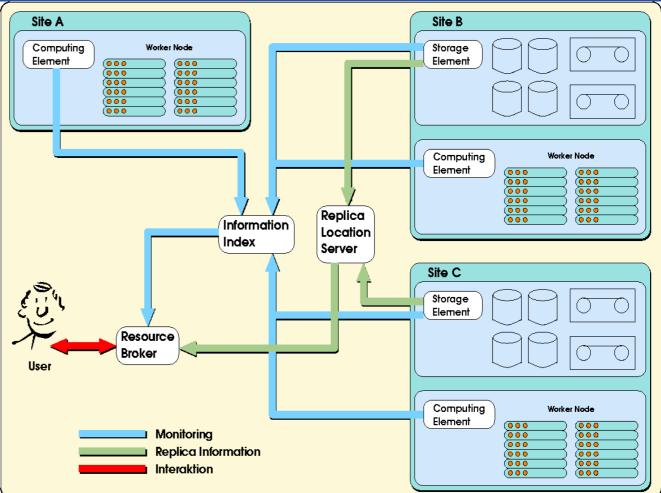
A not so easy schematic view

Enabling Grids for E-sciencE

INFSO-RI-508833

A user's view

Enabling Grids for E-sciencE


Different sites

 offer different
 services
 (computing,
 storage, software)

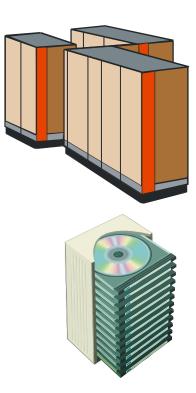
eGee

 Jobs should go to the data

•Some information has to be provided by the user (e.g. which files does job need?)

Grid elements

- Computing Element (CE)
- Woker Node (WN)
- Storage Element (SE)
- User Interface (UI)
- Resource Broker (RB)
- Berkeley Database Information Index (BDII)
- MyProxy Server (Proxy)
- Replica Location Service (RLS)
- Virtual Organisation Server (VO)


site-wide

grid-wide

Site-wide services

- Computing Element (CE)
 - gateway to local computing resources (worker nodes, WNs)
 - a Globus gatekeeper
- Storage Element (SE)
 - gateway to local storage (disk, tape)
 - a Globus gridftp server, an SRM interface
- Layer of abstraction: local peculiarities irrelevant
- User Interface (UI)
 - user's access point to the grid
 - client programs using some/all grid services

 Actually consists of RB, LB (Logging and Bookkeeping), JSS (Job Submission Service)

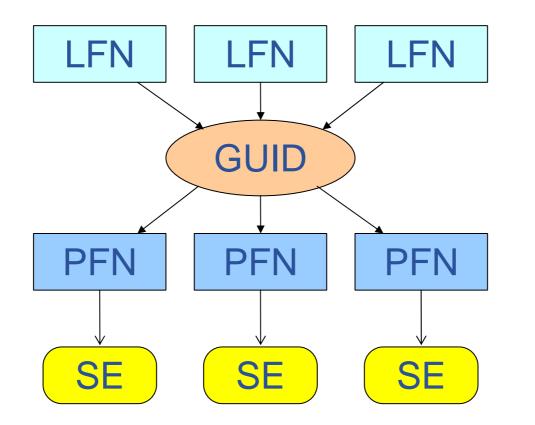
Resource Broker

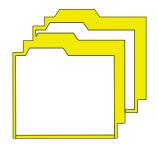
- RB matches job requirements with CE offers (CPUs, files, pre-installed software)
 - gets resource information from BDII and RLS
- LB keeps track of job and its status
- JSS provides reliable submission system
- Primary job execution interface for users
- Layer of abstraction: knowledge of local sites irrelevant
- Only certain VOs are permitted to use a particular RB

Aggregates service information from multiple grid sites

Information Service

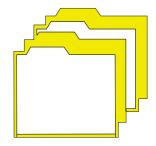
- CEs, SEs, RLSes, ...
- accepted VOs
- resource availability and usage (CPU, storage)
- Currently in use: BDII
 - basically an LDAP server
- Used by RBs to collect information on sites
 - defines RB's view of the Grid!
 - usually located "close" to an RB


Used by replica management tools to locate SEs, RLSes


	Information Serv	ice			
•			_	_	•
•		—	_	—	•
		_	_	_	
		_	_	_	
		_	_	_	
		_	_	\equiv	
		=	=	=	
		-			\square

Replica Location Service (1)

 RLS maps logical file names (LFNs) to physical file names (PFNs) via globally unique identifiers (GUIDs)



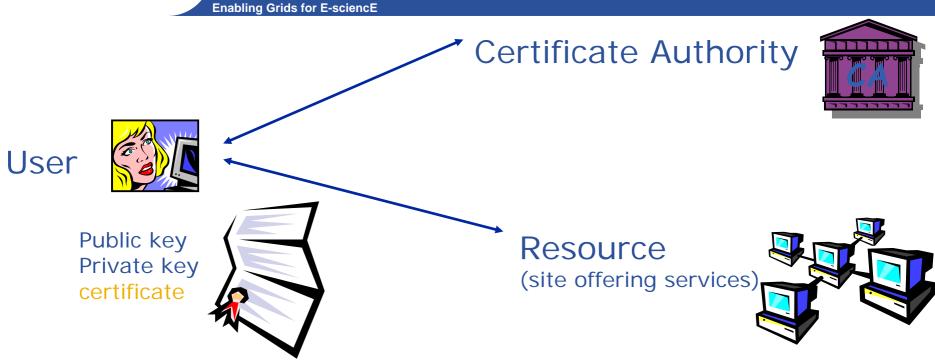
• **RLS remembers locations of files**

- only deals with their locations
- data transfer handled separately: PFNs point to actual storage location and access protocol
- Files can be replicated on multiple SEs
- Each file registered with the RLS has a unique ID
 - same file gets different IDs when registered multiple times
- LFNs are names that make sense to you
- Layer of abstraction: file location irrelevant

- VO contains people working together on some activity
- Members listed in a VO server
 - currently: LDAP server
 - Each member identified by their personal certificates, e.g.
 /O=GermanGrid/OU=GermanGrid/CN=Christopher Jung
 - VO manager adds/removes people "from VO"
 - server can be run at arbitrary location
 - server can be run by people not member of VO

Another view on the grid

Enabling Grids for E-sciencE Replica Catalogue Input "sandbox" UI **DataSets** info orid-proximit JDI Information **Output "sandbox" Service** SE & CE info Resource HIDLIN & SOLUTION & S. X BROKER HIE OUTPUT Sandboxs **Broker**: <u>xpanded</u> Job Author. Job Query &Authen. Publish Event **Storage Globus RSL Element Job Submission Job Status Service** Computing Logging & **Element Job Status Book-keeping**


- Distribution of resources: secure access is a basic requirement
 - secure communication
 - security across organisational boundaries
 - single "sign-on" for users of the Grid
- Two basic concepts:
 - Authentication: Who am I?
 - "Equivalent" to a passport, ID card etc.

- Authorization: What can I do?
 - "Equivalent" to a visa or access list
 - Certain permissions, duties etc.

Certificates

•Grid community mainly uses X.509 PKI (well established!)

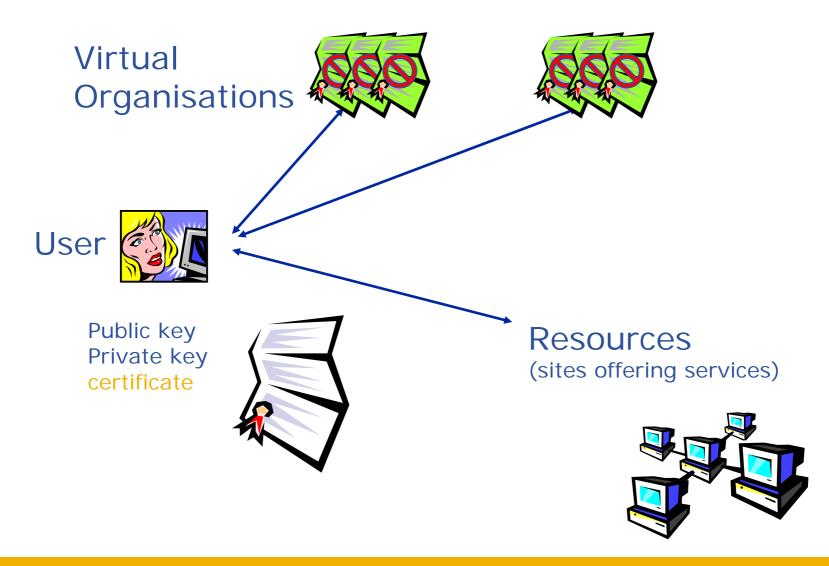
•Each user has public and private keys; these keys are mathematically related

So called asymmetric cryptography

eGee

Asymmetric cryptography

• What is symmetric cryptography?


- Algorithms in which you can get the deciphering rules from knowledge of the ciphering rules in a "reasonable" amount of time
- Examples: Caesarian code (shifting the text), stream cipher, ...
- Very fast

• Asymmetric cryptography:

- The knowledge of the enciphering key does not help to calculate the deciphering key
- Everybody publishes his/her public key
- If you want to send a message to Mr A, you encode your message with A's public key. This message then can be encoded only with his private key
- Rather slow
- No problems when exchanging the keys

Authorization

• Getting a certificate:

- 1. Log on to a UI.
- Execute 'grid-cert-request' and follow the instructions. You will get a "cert request file". Send it to your CA: "GridKa-CA@iwr.fzk.de".
- 3. Wait until you get a confirmation e-mail. Send a xerox copy of your passport to the CA (via ground mail); copy has to be charged by a person in charge (e.g. Andreas Gellrich).
- 4. You will get a certificate per mail.
- 5. Register with your VO (e.g. "http://lcg-registrar.cern.ch/").

For this training, the certificates have been already pre-installed.

• The certificate that you present to others contains:

- User identification
- Your public key
- A "signature" from a Certificate Authority (CA) that:
 - Proves that the certificate came from the CA.

.

- Vouches for the subject name
- Vouches for the binding of the public key to the subject
- Expiry date

Certificate: Data: Version: 3 (0x2) Serial Number: 820 (0x334) Signature Algorithm: sha1WithRSAEncryption Issuer: C=DE, O=GermanGrid, CN=GridKa-CA Validity Not Before: Feb 9 14:45:00 2005 GMT Not After : Feb 9 14:45:00 2006 GMT Subject: O=GermanGrid, OU=EKP, CN=Christopher Jung Subject Public Key Info:

Questions? Time to do something practical!

Thanks to the German Federal Ministry of Education and Research, BMB+F, as well as Forschungszentrum Karlsruhe / Germany for their continuous interest and support !

bmb+f - Förderschwerpunkt Hadronen und Kernphysik

Großgeräte der physikalischen Grundlagenforschung