Basis-independent description of CP-violation in the Two-Higgs-Doublet Model

> Howard E. Haber CPNSH3@SLAC 23 March 2005

This talk is based on work that appears in:

- G. Branco, L. Lavoura and J.P. Silva, *CP Violation* (Oxford University Press, Oxford, England, 1999), chapters 22 and 23.
- S. Davidson and H.E. Haber, "Basis-independent methods for the two-Higgs-doublet model," SCIPP-04/15 (hep-ph/0504nnn).
- J.F. Gunion and H.E. Haber, "Conditions for explicit CP-Violation in the general two-Higgs-doublet model," SCIPP-04/16 (hepph/0504nnn).

<u>Outline</u>

Motivation

- The MSSM and the two-Higgs-doublet Model
- What is the nature of Higgs-mediated CP-violation?
- The general Two-Higgs-Doublet Model (2HDM)

- The need for basis-independent techniques

- Conditions for explicit CP-violation
 - A survey of potentially complex invariants
 - A minimal set of complex invariants
- Conditions for spontaneous CP-violation
- Unfinished Business

Motivation

The Higgs sector of the minimal supersymmetric extension of the Standard Model (MSSM) is a constrained two-Higgsdoublet model (2HDM). However, at one-loop all possible 2HDM interactions allowed by gauge invariance are generated (due to SUSY-breaking interactions).

Thus, the Higgs sector of the MSSM is in reality the most general (CP-violating) 2HDM model—albeit with certain relations among the Higgs sector parameters determined by the fundamental parameters of the broken supersymmetric model.

The general 2HDM consists of two identical (hyperchargeone) scalar doublets Φ_1 and Φ_2 . To determine the physical quantities of the theory, one must develop basis-independent techniques.

Questions:

- Is the Higgs sector CP-violating?
- If yes, is the CP-violation explicit or spontaneous?

One can always arrange the vacuum expectation values (vevs) of the Higgs field to take the form:

$$\langle \Phi_1 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_1 \end{pmatrix}, \qquad \langle \Phi_2 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_2 e^{i\xi} \end{pmatrix},$$

where v_1 and v_2 are real and non-negative, $0 \le \xi < 2\pi$ and $v^2 \equiv v_1^2 + v_2^2 = 4m_W^2/g^2 = (246 \text{ GeV})^2$.

But a further phase redefinition $\Phi_2 \rightarrow e^{i\xi} \Phi_2$ removes the phase from the vevs. So, how can one really be sure about the nature of Higgs-mediated CP-violation?

Compare this situation with broken global symmetries. The existence or non-existence of mass for a (would-be) Goldstone boson provides the evidence for or against a spontaneously broken global symmetry.

The General Two-Higgs-Doublet Model

Consider the 2HDM potential in a generic basis:

$$\begin{split} \mathcal{V} &= m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - [m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.}] + \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 \\ &+ \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) \\ &+ \left\{ \frac{1}{2} \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + \left[\lambda_6 (\Phi_1^{\dagger} \Phi_1) + \lambda_7 (\Phi_2^{\dagger} \Phi_2) \right] \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right\} \end{split}$$

A basis change consists of a U(2) transformation $\Phi_a \rightarrow U_{a\bar{b}} \Phi_b$ (and $\Phi_{\bar{a}}^{\dagger} \rightarrow \Phi_{\bar{b}}^{\dagger} U_{b\bar{a}}^{\dagger}$). Here, U(2) \cong SU(2)×U(1)_Y. The parameters m_{11}^2 , m_{22}^2 , m_{12}^2 , and $\lambda_1, \ldots, \lambda_7$ are transformed under the "flavor"-SU(2) transformation. To identify invariants, write :

 $\mathcal{V} = Y_{a\bar{b}} \Phi_{\bar{a}}^{\dagger} \Phi_{b} + \frac{1}{2} Z_{a\bar{b}c\bar{d}} (\Phi_{\bar{a}}^{\dagger} \Phi_{b}) (\Phi_{\bar{c}}^{\dagger} \Phi_{d}) ,$

where $Z_{a\bar{b}c\bar{d}}=Z_{c\bar{d}a\bar{b}}$ and hermiticity implies

$$Y_{a\bar{b}} = (Y_{b\bar{a}})^*, \qquad Z_{a\bar{b}c\bar{d}} = (Z_{b\bar{a}d\bar{c}})^*.$$

The barred indicies help keep track of which indices transform with Uand which transform with U^{\dagger} . For example, $Y_{a\bar{b}} \rightarrow U_{a\bar{c}}Y_{c\bar{d}}U_{d\bar{b}}^{\dagger}$ and $Z_{a\bar{b}c\bar{d}} \rightarrow U_{a\bar{e}}U_{f\bar{b}}^{\dagger}U_{c\bar{g}}U_{h\bar{d}}^{\dagger}Z_{e\bar{f}g\bar{h}}$.

Conditions for explicit CP-violation

Here, we consider the conditions for Higgs-mediated CPviolation due to an explicitly CP-violating Higgs potential.*

<u>Theorem 1</u>: The Higgs potential is CP-conserving if and only if there exists a basis in which all Higgs potential parameters are real.

Potentially complex Higgs potential parameters are: m_{12}^2 , λ_5 , λ_6 and λ_7 . Of course, these are basis-dependent quantities. Nevertheless, the following result should be noted:

<u>Theorem 2</u>: In a generic basis, the following is a sufficient (but not a necessary) condition for an explicitly CPconserving 2HDM scalar potential:

Im
$$([m_{12}^2]^2 \lambda_5^*) = \text{Im} (m_{12}^2 \lambda_6^*) = \text{Im} (m_{12}^2 \lambda_7^*)$$

= Im $(\lambda_5^* \lambda_6^2) = \text{Im} (\lambda_5^* \lambda_7^2) = \text{Im} (\lambda_6^* \lambda_7) = 0$

*We defer the question of whether CP is spontaneously broken if the Higgs potential is manifestly CP-conserving.

Clearly, the latter is not good enough. We shall instead provide a set of basis-independent conditions. The complete set of conditions is summarized by the following result:

<u>Theorem 3</u>: The following are the necessary and sufficient conditions for an explicitly CP-conserving 2HDM scalar potential:

$$I_{3Y3Z} = 0, \quad \text{if } \lambda_1 = \lambda_2 \text{ and } \lambda_6 = -\lambda_7$$
$$I_{Y3Z} = I_{2Y2Z} = I_{6Z} = 0, \quad \text{otherwise}$$

where

$$\begin{split} I_{Y3Z} &\equiv \operatorname{Im}(Y_{d\bar{a}} Z_{a\bar{c}}^{(1)} Z_{e\bar{b}}^{(1)} Z_{b\bar{e}c\bar{d}}), \\ I_{2Y2Z} &\equiv \operatorname{Im}(Y_{a\bar{b}} Y_{c\bar{d}} Z_{b\bar{a}d\bar{f}} Z_{f\bar{c}}^{(1)}), \\ I_{6Z} &\equiv \operatorname{Im}(Z_{a\bar{b}c\bar{d}} Z_{b\bar{f}}^{(1)} Z_{d\bar{h}}^{(1)} Z_{f\bar{a}j\bar{k}} Z_{k\bar{j}m\bar{n}} Z_{n\bar{m}h\bar{c}}), \\ I_{3Y3Z} &\equiv \operatorname{Im}(Y_{q\bar{f}} Y_{h\bar{b}} Y_{g\bar{a}} Z_{e\bar{h}f\bar{q}} Z_{c\bar{c}d\bar{g}} Z_{a\bar{c}b\bar{d}}). \end{split}$$

Above, we have introduced:

$$Z_{a\bar{d}}^{(1)} \equiv \delta_{b\bar{c}} Z_{a\bar{b}c\bar{d}} = Z_{a\bar{b}b\bar{d}} \,.$$

Explicit results

$$\begin{split} I_{6Z} &= 2|\lambda_{5}|^{2} \mathrm{Im}[(\lambda_{7}^{*}\lambda_{6})^{2}] - \mathrm{Im}[\lambda_{5}^{*2}(\lambda_{6} - \lambda_{7})(\lambda_{6} + \lambda_{7})^{3}] \\ &+ 2\mathrm{Im}(\lambda_{7}^{*}\lambda_{6}) \left[|\lambda_{5}|^{2}[|\lambda_{6}|^{2} + |\lambda_{7}|^{2} - (\lambda_{1} - \lambda_{2})^{2}] - 2(|\lambda_{6}|^{2} - |\lambda_{7}|^{2})^{2} \right] \\ &+ (\lambda_{1} - \lambda_{2})\mathrm{Im} \left[[\Lambda^{*} - 2\lambda_{5}^{*}(\lambda_{6} + \lambda_{7})](\lambda_{7} - \lambda_{6})(\lambda_{7}^{*}\lambda_{6} - \lambda_{6}^{*}\lambda_{7}) \right] \\ &- (\lambda_{1} - \lambda_{2})\mathrm{Im}(\lambda_{5}^{*}\Lambda^{2}) - 2(|\lambda_{6}|^{2} - |\lambda_{7}|^{2})\mathrm{Im}[\lambda_{5}^{*}\Lambda(\lambda_{6} + \lambda_{7})] \\ &+ (\lambda_{1} - \lambda_{2})|\lambda_{5}|^{2}\mathrm{Im}[\lambda_{5}^{*}(\lambda_{6} + \lambda_{7})^{2}] \,, \end{split}$$

$$\begin{split} I_{Y3Z} &= 2(|\lambda_6|^2 - |\lambda_7|^2) \mathrm{Im}[Y_{12}(\lambda_6^* + \lambda_7^*)] \\ &+ (Y_{11} - Y_{22}) \Big[\mathrm{Im}[\lambda_5^*(\lambda_6 + \lambda_7)^2] - (\lambda_1 - \lambda_2) \mathrm{Im}(\lambda_7^*\lambda_6) \Big] \\ &+ (\lambda_1 - \lambda_2) \Big[\mathrm{Im}(Y_{12}\Lambda^*) - \mathrm{Im}[Y_{12}\lambda_5^*(\lambda_6 + \lambda_7)] \Big] \,, \end{split}$$

$$I_{2Y2Z} = (\lambda_1 - \lambda_2) \operatorname{Im}(Y_{12}^2 \lambda_5^*) - \operatorname{Im}[(Y_{12} \lambda_6^*)^2] + \operatorname{Im}[(Y_{12} \lambda_7^*)^2] + [(Y_{11} - Y_{22})^2 - 2|Y_{12}|^2] \operatorname{Im}(\lambda_7^* \lambda_6) - (Y_{11} - Y_{22}) \left[\operatorname{Im}(Y_{12} \Lambda^*) + \operatorname{Im}(Y_{12} \lambda_5^* (\lambda_6 + \lambda_7)) \right] ,$$

where

$$\Lambda \equiv (\lambda_2 - \lambda_3 - \lambda_4)\lambda_6 + (\lambda_1 - \lambda_3 - \lambda_4)\lambda_7.$$

The expression for I_{3Y3Z} is very long and will not be given here.

Enumerating all possible invariants

An arbitrary invariant is a product of Y's and Z's, where all possible indices are tied together (*i.e.*, summing unbarred/barred indices in all possible ways). That is,

$J \equiv Z_{a\bar{a}'b\bar{b}'} Z_{c\bar{c}'d\bar{d}'} \cdots Y_{g\bar{g}'} Y_{h\bar{h}'} \cdots ,$

where $\{a', b', c', d', \ldots, g', h', \ldots\}$ is a permutation of $\{a, b, c, d, \ldots, g, h, \ldots\}$. If the invariant J contains n_Z factors of Z and n_Y factors of Y, then there are $(2n_Z + n_Y)!$ possible invariants of order $(n_Z + n_Y)$. We wish to determine whether $I \equiv \text{Im } J \neq 0$, and how many of these are independent.[†]

Invariant type	number
5Z or 2Y4Z	3,628,800
Y4Z or 3Y3Z	362,880
2Y3Z	40,320
6Z	479,001,600
Y5Z	39,916,800

[†]The imaginary parts of many of these invariants trivially reduce to lower order ones, if one sums over the indices of a given Z (which can produce, *e.g.*, $\operatorname{Tr} Z^{(1)} = \lambda_1 + \lambda_2 + 2\lambda_4$) or a given Y (which can produce $\operatorname{Tr} Y = Y_{11} + Y_{22}$).

Based on analytic work and exploration via Mathematica:

- All invariants of cubic order or less are manifestly real.
- The imaginary part of any potentially complex quartic invariant is a real linear combination of I_{Y3Z} and I_{2Y2Z} .
- The imaginary part of any potentially complex fifth-order invariant vanishes if $I_{Y3Z} = I_{2Y2Z} = 0$.
- The imaginary part of any potentially complex sixth-order invariant that is independent of Y is proportional to I_{6Z}. Moreover, if Y_{ab̄} = 0 then the imaginary part of any invariant of arbitrary order vanishes if I_{6Z} = 0.
- The imaginary part of any potentially complex sixth order invariant that is both cubic in Y and Z respectively is a real linear combination of the invariant I_{3Y3Z} and lower-order invariants that vanish if I_{Y3Z} = I_{2Y2Z} = 0.
- The imaginary part of any invariant of arbitrary order vanishes if $I_{Y3Z} = I_{2Y2Z} = I_{6Z} = I_{3Y3Z} = 0$.

To see that all four invariants introduced above are required, we first note that there always exists a basis in which $\lambda_7 = -\lambda_6$. [Proof: noting that

$$Z^{(1)} = \begin{pmatrix} \lambda_1 + \lambda_4 & \lambda_6 + \lambda_7 \\ \lambda_6^* + \lambda_7^* & \lambda_2 + \lambda_4 \end{pmatrix}$$

is an hermitian matrix, we can always diagonalize it.] In the $\lambda_7 = -\lambda_6$ basis (this basis is not unique),

$$I_{6Z} = -(\lambda_1 - \lambda_2)^3 \operatorname{Im}(\lambda_5^* \lambda_6^2),$$

$$I_{Y3Z} = -(\lambda_1 - \lambda_2)^2 \operatorname{Im}(Y_{12} \lambda_6^*),$$

$$I_{2Y2Z} = (\lambda_1 - \lambda_2) \left[\operatorname{Im}(Y_{12}^2 \lambda_5^*) + (Y_{11} - Y_{22}) \operatorname{Im}(Y_{12} \lambda_6^*) \right].$$

First, suppose that $\lambda_1 \neq \lambda_2$. Then consider three cases:

1.
$$Y_{a\bar{b}} = 0$$
 $[\Longrightarrow I_{Y3Z} = I_{2Y2Z} = I_{3Y3Z} = 0]$
2. $\lambda_6 = 0$ and $Y_{11} = Y_{22}$ $[\Longrightarrow I_{6Z} = I_{Y3Z} = I_{3Y3Z} = 0]$
3. $\lambda_5 = Y_{11} = Y_{22} = 0$ and $\operatorname{Re}(Y_{12}\lambda_6^*) = 0$
 $[\Longrightarrow I_{6Z} = I_{2Y2Z} = I_{3Y3Z} = 0].$

In each case there is only one potentially complex invariant.

In a basis where $\lambda_6 = -\lambda_7$,

$$\begin{split} I_{3Y3Z} &= 2\mathrm{Im}(Y_{12}^{3}\lambda_{6}(\lambda_{5}^{*})^{2}) - 4\mathrm{Im}(Y_{12}^{3}(\lambda_{6}^{*})^{3}) \\ &+ [(Y_{11} - Y_{22})^{2} - 6|Y_{12}|^{2}](Y_{11} - Y_{22})\mathrm{Im}(\lambda_{6}^{2}\lambda_{5}^{*}) \\ &- (\lambda_{1} + \lambda_{2} - 2\lambda_{3} - 2\lambda_{4}) \Big\{ (Y_{11} - Y_{22})\mathrm{Im}(Y_{12}^{2}(\lambda_{6}^{*})^{2}) \\ &- \mathrm{Im}(Y_{12}^{3}\lambda_{5}^{*}\lambda_{6}^{*}) + \Big[(Y_{11} - Y_{22})^{2} - |Y_{12}|^{2} \Big] \mathrm{Im}(Y_{12}\lambda_{6}\lambda_{5}^{*}) \Big] \\ &+ \Big\{ (4|\lambda_{6}|^{2} - 2|\lambda_{5}|^{2}) \left[(Y_{11} - Y_{22})^{2} - |Y_{12}|^{2} \right] \\ &+ (\lambda_{1} - \lambda_{2})^{2}Y_{11}Y_{22} \Big\} \mathrm{Im}(Y_{12}\lambda_{6}^{*}) \\ &+ \Big[(\lambda_{1} - \lambda_{3} - \lambda_{4})(\lambda_{2} - \lambda_{3} - \lambda_{4}) + 2|\lambda_{6}|^{2} - |\lambda_{5}|^{2} \Big] \\ &\times (Y_{11} - Y_{22})\mathrm{Im}(Y_{12}^{2}\lambda_{5}^{*}) \,. \end{split}$$

If $\lambda_6 = 0$ and $Y_{11} = Y_{22}$, then $I_{3Y3Z} = 0$. In this case, only I_{YYZZ} is potentially complex.

If $\lambda_5 = Y_{11} = Y_{22} = 0$ and $\operatorname{Re}(Y_{12}\lambda_6^*) = 0$, then $I_{3Y3Z} = 0$ and I_{Y3Z} is potentially complex.

If $\lambda_1 = \lambda_2$ and $\lambda_7 = -\lambda_6$, then $I_{6Z} = I_{Y3Z} = I_{2Y2Z} = 0$. Nevertheless, CP can still be violated if $I_{3Y3Z} \neq 0$.

Dependant invariants

Here are some examples of "new invariants" that are not independent of the four invariants previously identified. Consider:

$$\begin{split} I_{2Y3Z} &\equiv \mathrm{Im} \left(Z_{a\bar{c}b\bar{e}} Z_{c\bar{f}d\bar{b}} Z_{e\bar{g}f\bar{h}} Y_{g\bar{a}} Y_{h\bar{d}} \right), \\ I_{Y4Z} &\equiv \mathrm{Im} \left(Z_{a\bar{b}}^{(2)} Z_{b\bar{a}c\bar{d}} Z_{d\bar{e}}^{(2)} Z_{e\bar{c}f\bar{g}} Y_{g\bar{f}} \right), \\ \text{where } Z_{c\bar{d}}^{(2)} &\equiv \delta_{b\bar{a}} Z_{a\bar{b}c\bar{d}} = Z_{a\bar{a}c\bar{d}}. \text{ Then, in the } \lambda_7 = -\lambda_6 \text{ basis,} \\ I_{2Y3Z} &= -2\lambda_4 \ I_{2Y2Z} + (\lambda_1 - \lambda_2) \left[4 \ \mathrm{Im} \ (Y_{12}^2 \lambda_6^{*2}) \right. \\ &\qquad + 2 \ (Y_{11} - Y_{22}) \ \mathrm{Im} \ (Y_{12} \lambda_5^* \lambda_6) \\ &\qquad + (\lambda_1 + \lambda_2 - 2\lambda_3 - 2\lambda_4) \ \mathrm{Im} \ (Y_{12}^2 \lambda_5^*) \right], \\ I_{Y4Z} &= -\lambda_4 \ I_{Y3Z} + (\lambda_1 - \lambda_2)^2 \ \mathrm{Im} \ (Y_{12} \lambda_5^* \lambda_6) \,. \end{split}$$

Noting that Im $(Y_{12}^2\lambda_6^{*2}) = 2$ Im $(Y_{12}\lambda_6^*)$ Re $(Y_{12}\lambda_6^*)$, etc., it is easy to show that if $I_{2Y2Z} = I_{Y3Z} = 0$ (in the $\lambda_7 = -\lambda_6$ basis), then $I_{2Y3Z} = I_{Y4Z} = 0$. But these are invariant (basis-independent) quantities, so this result must be true in any basis.

Thus, $I_{2Y2Z} = I_{Y3Z} = 0$ is sufficient to guarantee that all potentially complex invariants of order five or less are all real.

Special model cases:

- 1. $\lambda_1 = \lambda_2$, $\lambda_6 = \lambda_7$, $Y_{11} = Y_{22}$, where Y_{12} , λ_5 and λ_6 have arbitrary phases.
- 2. $\lambda_1 + \lambda_2 = 2(\lambda_3 + \lambda_4)$, $\lambda_5 = 0$, $\lambda_6 = \lambda_7$, where Y_{12} and λ_6 have arbitrary phases.
- 3. $\lambda_1 = \lambda_2$, $\lambda_6 = \lambda_7^*$, $Y_{11} = Y_{22}$, and Y_{12} and λ_5 are real.

All four CP-odd invariants vanish for these three models. Thus, these models explicitly conserve CP (despite the fact that the conditions of Theroem 2 are not necessarily satisfied).

Model 3 arises by imposing a discrete permutation symmetry, $\Phi_1 \leftrightarrow \Phi_2$. If in addition λ_6 is real, then there exists a minimum of the scalar potential with $v_1 = v_2$ and $\xi \neq 0$. Nevertheless, CP is not spontaneously broken, since one can find a U(2) transformation to a new basis in which all scalar potential parameters are real and $\xi = 0 \pmod{\pi}$.

Proof of Theorem 3

Suppose there exist a basis in which Y_{12} and $\lambda_{5,6,7}$ are real. Then, in this basis, the imaginary part of any invariant vanishes. But, invariants are basis-independent. Thus, all invariant quantities made up of the $Y_{a\bar{b}}$ and the $Z_{a\bar{b}c\bar{d}}$ are real.

The proof of the converse is more involved. We proceed in four steps. Go to the $\lambda_7 = -\lambda_6$ basis.

1. Suppose that $\lambda_1 \neq \lambda_2$. If $I_{2Y2Z} = I_{Y3Z} = I_{6Z} = 0$, then

Im
$$(\lambda_5^*\lambda_6^2) =$$
Im $(Y_{12}\lambda_6^*) =$ Im $(Y_{12}^2\lambda_5^*) = 0$.

One can always make a phase rotation $\Phi_1^{\dagger}\Phi_2 \rightarrow e^{i\gamma}\Phi_1^{\dagger}\Phi_2$ so that λ_6 is real. If $\lambda_6 = 0$, then the phase γ will be chosen so that λ_5 is real. Thus, after the phase rotation, we are now in a basis where all Higgs potential parameters are real. (In particular, it follows that $I_{3Y3Z} = 0$ as well.)

2. Suppose that $\lambda_1 \neq \lambda_2$ and $Y_{a\bar{b}} = 0$. Then, if $I_{6Z} = 0$, it follows that $\text{Im} (\lambda_5^* \lambda_6^2) = 0$. The same phase rotation as above implies that a basis exists where all the λ_i are real.

3. Suppose that $\lambda_1 = \lambda_2$ and $\lambda_7 = -\lambda_6$. If true in one basis, it is true in all bases. Since $I_{6Z} = 0$, then there exists a basis in which all the λ_i are real.

<u>Proof:</u> If $\lambda_7 = -\lambda_6 = 0$ then one can trivially phase rotate one of the scalar fields such that λ_5 is real. So assume that $\lambda_6 \neq 0$ and phase rotate one of the scalar fields so that λ_6 is real. From this basis, rotate to a new basis with the unitary matrix $U(\theta, \xi, \chi)$:

$$U(\theta,\xi,\chi) = \begin{pmatrix} \cos\theta & e^{-i\xi}\sin\theta \\ -e^{i\chi}\sin\theta & e^{i(\chi-\xi)}\cos\theta \end{pmatrix}$$

Then,

$$\begin{split} \lambda_{5}^{\prime}e^{2i\chi} &= \frac{1}{4}s_{2\theta}^{2}\left[\lambda_{1} + \lambda_{2} - 2\lambda_{345}\right] + \operatorname{Re}(\lambda_{5}e^{2i\xi}) + ic_{2\theta}\operatorname{Im}(\lambda_{5}e^{2i\xi}) \\ &\quad -s_{2\theta}c_{2\theta}\operatorname{Re}[(\lambda_{6} - \lambda_{7})e^{i\xi}] - is_{2\theta}\operatorname{Im}[(\lambda_{6} - \lambda_{7})e^{i\xi})] \,, \\ \lambda_{6}^{\prime}e^{i\chi} &= -\frac{1}{2}s_{2\theta}\left[\lambda_{1}c_{\theta}^{2} - \lambda_{2}s_{\theta}^{2} - \lambda_{345}c_{2\theta} - i\operatorname{Im}(\lambda_{5}e^{2i\xi})\right] \\ &\quad +c_{\theta}c_{3\theta}\operatorname{Re}(\lambda_{6}e^{i\xi}) + s_{\theta}s_{3\theta}\operatorname{Re}(\lambda_{7}e^{i\xi}) \\ &\quad +ic_{\theta}^{2}\operatorname{Im}(\lambda_{6}e^{i\xi}) + is_{\theta}^{2}\operatorname{Im}(\lambda_{7}e^{i\xi}) \,. \end{split}$$

Put $\lambda_1 = \lambda_2$ and $\lambda_7 = -\lambda_6$ real in the above equations. Then, look for solutions to Im $\lambda'_5 = 0$ and Im $\lambda'_6 = 0$. These two equations are equivalent to $\tan 2\chi = 4f_a/f_c$ and $\tan \chi = 2f_d/f_b$, where the f's are functions of θ , ξ and the argument of λ_5 . Since $\tan 2\chi = 2 \tan \chi/(1 - \tan^2 \chi)$, it follows that we must find a θ and ξ such that:

$$G(\theta,\xi) \equiv f_a(f_b^2 - 4f_d^2) - f_b f_c f_d = 0$$
.

Inserting the explicit forms for the f's, one easily shows that $G(\pi/2, \xi) = -G(0, \xi)$, which implies that for any ξ , there exists a θ between 0 and $\pi/2$ that solves $G(\theta, \xi) = 0$. That is, we have found the new basis where all the λ_i are real.

4. Suppose that $\lambda_1 = \lambda_2$ and $\lambda_7 = -\lambda_6$. If $I_{3Y3Z} = 0$, then there exists a basis in which all the Higgs potential parameters are real.

<u>Proof</u>: Using the result of step 3, it follows that one can find a basis where all the λ_i are real. In this basis, $I_{3Y3Z} = 2AB \text{ Im } Y_{12}$, where

$$\begin{split} A &\equiv \lambda_5^2 + \lambda_5 (\lambda_1 - \lambda_3 - \lambda_4) - 2\lambda_6^2 \,, \\ B &\equiv 4\lambda_6 \left(\operatorname{Re} \, Y_{12} \right)^2 - (Y_{11} - Y_{22})(\lambda_3 + \lambda_4 + \lambda_5 - \lambda_1) \operatorname{Re} \, Y_{12} \\ &- (Y_{11} - Y_{22})^2 \lambda_6 \,. \end{split}$$

If Im $Y_{12} = 0$, then our proof is complete. If Im $Y_{12} \neq 0$, one can make a further change of basis to a new basis where Im $Y'_{12} = \text{Im } \lambda'_5 = \text{Im } \lambda'_6 = 0$ if either A = 0 or B = 0. To prove this assertion requires one to construct the unitary matrix $U(\theta, \xi, \chi)$ such that $\operatorname{Im} Y'_{12} = \operatorname{Im} \lambda'_5 = \operatorname{Im} \lambda'_6 = 0$, where λ'_5 and λ'_6 were given previously and

$$Y_{12}'e^{i\chi} = \frac{1}{2}(Y_{22} - Y_{11})s_{2\theta} + \operatorname{Re}(Y_{12}e^{i\xi})c_{2\theta} + i\operatorname{Im}(Y_{12}e^{i\xi}).$$

We have verified that such a U always exists.[‡] This completes the proof.

$$\tan 2\theta = \frac{2|Y_{12}|\cos\theta_{12}}{Y_{22} - Y_{11}}, \qquad \cot 4\theta = \frac{1}{4}(\lambda_{345} - \lambda_1),$$

where $\theta_{12} \equiv \arg Y_{12}$ and $\lambda_{345} \equiv \lambda_3 + \lambda_4 + \lambda_5$. These two equations for θ are generally inconsistent. But, they are compatible if B = 0. (Note that B = 0 is a quadratic equation for $\cos \theta_{12}$.) A different analysis is required if A = 0.

[‡]For example, choose $\chi = \pi/2$ and $\xi = -\pi$. Then, Im $\lambda'_5 = 0$ for arbitrary θ , while Im $Y'_{12} = \text{Im } \lambda'_6 = 0$ requires that θ satisfy:

Conditions for Spontaneous CP-violation

If $I_{6Z} = I_{YZZZ} = I_{YYZZ} = I_{3Y3Z} = 0$, then the Higgs potential is CP-conserving. This means that there exists a family of "real" bases in which all Higgs potential parameters are real. To determine whether CP is spontaneously broken, one must check whether or not the vacuum respects CP.

Theorem 4: Given an explicitly CP-conserving 2HDM potential, CP is spontaneously broken if and only if no real basis can be found in which the Higgs vacuum expectation values are real.

A basis independent formulation of this condition was obtained by Lavoura and Silva and by Botella and Silva. The scalar potential minimum condition is given by:

$$\widehat{v}_{\bar{a}}^* \left[Y_{a\bar{b}} + \frac{1}{2} v^2 Z_{a\bar{b}c\bar{d}} \widehat{v}_{\bar{c}}^* \widehat{v}_d \right] = 0 \,.$$

The most general $U(1)_{\rm EM}$ -conserving vev is:

$$\langle \Phi_a \rangle = \frac{v}{\sqrt{2}} \begin{pmatrix} 0\\ \widehat{v}_a \end{pmatrix}, \quad \text{with} \quad \widehat{v}_a \equiv \begin{pmatrix} c_\beta\\ s_\beta e^{i\xi} \end{pmatrix}.$$

Consider three invariants (that depend on the direction of the vev):

$$\begin{split} &-\frac{1}{2}v^{2}I_{1} \equiv \widehat{v}_{\bar{a}}^{*}Y_{a\bar{b}}Z_{b\bar{d}}^{(1)}\widehat{v}_{d} ,\\ &\frac{1}{4}v^{4}I_{2} \equiv \widehat{v}_{\bar{b}}^{*}\widehat{v}_{\bar{c}}^{*}Y_{b\bar{e}}Y_{c\bar{f}}Z_{e\bar{a}f\bar{d}}\widehat{v}_{a}\widehat{v}_{d} ,\\ &\frac{1}{4}v^{2}I_{3} \equiv \widehat{v}_{\bar{b}}^{*}\widehat{v}_{\bar{c}}^{*}Z_{b\bar{e}}^{(1)} \left[\frac{1}{4}v^{2}Z_{c\bar{f}}^{(1)}Z_{e\bar{a}f\bar{d}} + Y_{e\bar{d}}Z_{c\bar{a}}^{(1)}\right]\widehat{v}_{a}\widehat{v}_{d} .\end{split}$$

The factors of Y can be eliminated using the scalar potential minimum conditions, resulting in:

$$\begin{split} I_1 &\equiv \widehat{v}_{\bar{a}}^* \widehat{v}_{\bar{e}}^* Z_{a\bar{b}e\bar{f}} Z_{b\bar{d}}^{(1)} \widehat{v}_d \widehat{v}_f ,\\ I_2 &\equiv \widehat{v}_{\bar{b}}^* \widehat{v}_{\bar{c}}^* \widehat{v}_{\bar{g}}^* \widehat{v}_{\bar{p}}^* Z_{b\bar{e}g\bar{h}} Z_{c\bar{f}p\bar{r}} Z_{e\bar{a}f\bar{d}} \widehat{v}_a \widehat{v}_d \widehat{v}_h \widehat{v}_r ,\\ I_3 &\equiv \widehat{v}_{\bar{b}}^* \widehat{v}_{\bar{c}}^* Z_{b\bar{e}}^{(1)} \left[Z_{c\bar{f}}^{(1)} Z_{e\bar{a}f\bar{d}} - 2 Z_{c\bar{d}}^{(1)} Z_{e\bar{a}f\bar{g}} \widehat{v}_g \widehat{v}_{\bar{f}}^* \right] \widehat{v}_a \widehat{v}_d . \end{split}$$

Evaluating the CP-odd invariants in the so-called Higgs basis, where $\widehat{v} = (1, 0)$, we end up with:

Im
$$I_1 = \text{Im}[Z_6 Z_7^*]$$
, Im $I_2 = \text{Im}[Z_5^* Z_6^2]$,
Im $I_3 = \text{Im}[Z_5^* (Z_6 + Z_7)^2]$,

where Z_i are the scalar potential coefficients in the Higgs basis.

Theorem 5: The necessary and sufficient conditions for a CP-invariant scalar Higgs potential and a CP-conserving Higgs vacuum are: Im $I_1 = \text{Im } I_2 = \text{Im } I_3 = 0$.

Although there are at most two independent relative phases among I_1 , I_2 and I_3 , there are cases where two of the three invariants are real, so all three must be checked. That is,

Im
$$I_1 = \text{Im } I_2 = 0$$
 if $Z_6 = 0$,
Im $I_1 = \text{Im } I_3 = 0$ if $Z_7 = -Z_6$,
Im $I_2 = \text{Im } I_3 = 0$ if $Z_5 = 0$,

Note: additional CP-odd invariants involving the Higgsfermion Yukawa matrices enter when the Higgs-fermion couplings are included.

Unfinished business

• What is the physical significance of the four explicit CPviolating invariants? Which (if any) could be measured in precision Higgs studies at the ILC?

• Express all Higgs couplings in terms of invariants in the most general CP-violating 2HDM (and explore the approach to the decoupling limit).

• The CP-odd invariants are induced at the one-loop level in the MSSM. Find relations among these invariants which are perhaps a remnant of the underlying supersymmetry.

• Extend the basis independent formalism to include Higgs couplings to other sectors of the theory. (Some work along these lines already exists—see *CP Violation* by G. Branco *et al.* and references contained therein.)