Basis-independent description of CP-violation in the Two-Higgs-Doublet Model

Howard E. Haber CPNSH3@SLAC
23 March 2005

This talk is based on work that appears in:

1. G. Branco, L. Lavoura and J.P. Silva, CP Violation (Oxford University Press, Oxford, England, 1999), chapters 22 and 23.
2. S. Davidson and H.E. Haber, "Basis-independent methods for the two-Higgs-doublet model," SCIPP-04/15 (hep-ph/0504nnn).
3. J.F. Gunion and H.E. Haber, "Conditions for explicit CP-Violation in the general two-Higgs-doublet model," SCIPP-04/16 (hepph/0504nnn).

Outline

- Motivation
- The MSSM and the two-Higgs-doublet Model
- What is the nature of Higgs-mediated CP-violation?
- The general Two-Higgs-Doublet Model (2HDM)
- The need for basis-independent techniques
- Conditions for explicit CP-violation
- A survey of potentially complex invariants
- A minimal set of complex invariants
- Conditions for spontaneous CP-violation
- Unfinished Business

Motivation

The Higgs sector of the minimal supersymmetric extension of the Standard Model (MSSM) is a constrained two-Higgsdoublet model (2HDM). However, at one-loop all possible 2HDM interactions allowed by gauge invariance are generated (due to SUSY-breaking interactions).

Thus, the Higgs sector of the MSSM is in reality the most general (CP-violating) 2HDM model—albeit with certain relations among the Higgs sector parameters determined by the fundamental parameters of the broken supersymmetric model.

The general 2HDM consists of two identical (hyperchargeone) scalar doublets Φ_{1} and Φ_{2}. To determine the physical quantities of the theory, one must develop basis-independent techniques.

Questions:

- Is the Higgs sector CP-violating?
- If yes, is the CP-violation explicit or spontaneous?

One can always arrange the vacuum expectation values (vevs) of the Higgs field to take the form:

$$
\left\langle\Phi_{1}\right\rangle=\frac{1}{\sqrt{2}}\binom{0}{v_{1}}, \quad\left\langle\Phi_{2}\right\rangle=\frac{1}{\sqrt{2}}\binom{0}{v_{2} e^{i \xi}}
$$

where v_{1} and v_{2} are real and non-negative, $0 \leq \xi<2 \pi$ and $v^{2} \equiv v_{1}^{2}+v_{2}^{2}=4 m_{W}^{2} / g^{2}=(246 \mathrm{GeV})^{2}$.

But a further phase redefinition $\Phi_{2} \rightarrow e^{i \xi} \Phi_{2}$ removes the phase from the vevs. So, how can one really be sure about the nature of Higgs-mediated CP-violation?

Compare this situation with broken global symmetries. The existence or non-existence of mass for a (would-be) Goldstone boson provides the evidence for or against a spontaneously broken global symmetry.

The General Two-Higgs-Doublet Model

Consider the 2HDM potential in a generic basis:

$$
\begin{aligned}
\mathcal{V}= & m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1}+m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2}-\left[m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2}+\text { h.c. }\right]+\frac{1}{2} \lambda_{1}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)^{2} \\
& +\frac{1}{2} \lambda_{2}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)^{2}+\lambda_{3}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)\left(\Phi_{2}^{\dagger} \Phi_{2}\right)+\lambda_{4}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)\left(\Phi_{2}^{\dagger} \Phi_{1}\right) \\
& +\left\{\frac{1}{2} \lambda_{5}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)^{2}+\left[\lambda_{6}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)+\lambda_{7}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)\right] \Phi_{1}^{\dagger} \Phi_{2}+\text { h.c. }\right\}
\end{aligned}
$$

A basis change consists of a $\mathrm{U}(2)$ transformation $\Phi_{a} \rightarrow U_{a \bar{b}} \Phi_{b}$ (and $\left.\Phi_{\bar{a}}^{\dagger} \rightarrow \Phi_{\bar{b}}^{\dagger} U_{b \bar{a}}^{\dagger}\right)$. Here, $\mathrm{U}(2) \cong \mathrm{SU}(2) \times \mathrm{U}(1)_{\mathrm{Y}}$. The parameters m_{11}^{2}, m_{22}^{2}, m_{12}^{2}, and $\lambda_{1}, \ldots, \lambda_{7}$ are transformed under the "flavor"-SU(2) transformation. To identify invariants, write :

$$
\mathcal{V}=Y_{a \bar{b}} \Phi_{\bar{a}}^{\dagger} \Phi_{b}+\frac{1}{2} Z_{a \bar{b} c \bar{d}}\left(\Phi_{\bar{a}}^{\dagger} \Phi_{b}\right)\left(\Phi_{\bar{c}}^{\dagger} \Phi_{d}\right),
$$

where $Z_{a \bar{b} c \bar{d}}=Z_{c \bar{d} a \bar{b}}$ and hermiticity implies

$$
Y_{a \bar{b}}=\left(Y_{b \bar{a}}\right)^{*}, \quad Z_{a \bar{b} c \bar{d}}=\left(Z_{b \bar{a} d \bar{c}}\right)^{*}
$$

The barred indicies help keep track of which indices transform with U and which transform with U^{\dagger}. For example, $Y_{a \bar{b}} \rightarrow U_{a \bar{c}} Y_{c \bar{d}} U_{d \bar{b}}^{\dagger}$ and $Z_{a \bar{b} c \bar{d}} \rightarrow U_{a \bar{e}} U_{f \bar{b}}^{\dagger} U_{c \bar{g}} U_{h \bar{d}}^{\dagger} Z_{e \bar{f} g \bar{h}}$.

Conditions for explicit CP-violation

Here, we consider the conditions for Higgs-mediated CPviolation due to an explicitly CP-violating Higgs potential.*

Theorem 1: The Higgs potential is CP-conserving if and only if there exists a basis in which all Higgs potential parameters are real.

Potentially complex Higgs potential parameters are: m_{12}^{2}, λ_{5}, λ_{6} and λ_{7}. Of course, these are basis-dependent quantities. Nevertheless, the following result should be noted:

Theorem 2: In a generic basis, the following is a sufficient (but not a necessary) condition for an explicitly CPconserving 2HDM scalar potential:
$\operatorname{Im}\left(\left[m_{12}^{2}\right]^{2} \lambda_{5}^{*}\right)=\operatorname{Im}\left(m_{12}^{2} \lambda_{6}^{*}\right)=\operatorname{Im}\left(m_{12}^{2} \lambda_{7}^{*}\right)$

$$
=\operatorname{Im}\left(\lambda_{5}^{*} \lambda_{6}^{2}\right)=\operatorname{Im}\left(\lambda_{5}^{*} \lambda_{7}^{2}\right)=\operatorname{Im}\left(\lambda_{6}^{*} \lambda_{7}\right)=0 .
$$

[^0]Clearly, the latter is not good enough. We shall instead provide a set of basis-independent conditions. The complete set of conditions is summarized by the following result:

Theorem 3: The following are the necessary and sufficient conditions for an explicitly CP-conserving 2HDM scalar potential:

$$
\begin{aligned}
I_{3 Y 3 Z} & =0, \quad \text { if } \lambda_{1}=\lambda_{2} \quad \text { and } \lambda_{6}=-\lambda_{7} \\
I_{Y 3 Z} & =I_{2 Y 2 Z}=I_{6 Z}=0, \quad \text { otherwise }
\end{aligned}
$$

where

$$
\begin{aligned}
I_{Y 3 Z} & \equiv \operatorname{Im}\left(Y_{d \bar{a}} Z_{a \bar{c}}^{(1)} Z_{e \bar{b}}^{(1)} Z_{b \bar{e} c \bar{d}}\right), \\
I_{2 Y 2 Z} & \equiv \operatorname{Im}\left(Y_{a \bar{b}} Y_{c \bar{d}} Z_{b \bar{a} d \bar{f}} Z_{f \bar{c}}^{(1)}\right), \\
I_{6 Z} & \equiv \operatorname{Im}\left(Z_{a \bar{b} c \bar{d}} Z_{b \bar{f}}^{(1)} Z_{d \bar{h}}^{(1)} Z_{f \bar{a} j \bar{k}} Z_{k \bar{j} m \bar{n}} Z_{n \bar{m} h \bar{c}}\right), \\
I_{3 Y 3 Z} & \equiv \operatorname{Im}\left(Y_{q \bar{f}} Y_{h \bar{b}} Y_{g \bar{a}} Z_{e \bar{h} f \bar{q}} Z_{c \bar{e} d \bar{g}} Z_{a \bar{c} b \bar{d}}\right) .
\end{aligned}
$$

Above, we have introduced:

$$
Z_{a \bar{d}}^{(1)} \equiv \delta_{b \bar{c} \bar{c}} Z_{a \bar{b} c \bar{d}}=Z_{a \bar{b} b \bar{d}} .
$$

Explicit results

$$
\begin{aligned}
& I_{6 Z}=2\left|\lambda_{5}\right|^{2} \operatorname{Im}\left[\left(\lambda_{7}^{*} \lambda_{6}\right)^{2}\right]-\operatorname{Im}\left[\lambda_{5}^{* 2}\left(\lambda_{6}-\lambda_{7}\right)\left(\lambda_{6}+\lambda_{7}\right)^{3}\right] \\
& +2 \operatorname{Im}\left(\lambda_{7}^{*} \lambda_{6}\right)\left[\left|\lambda_{5}\right|^{2}\left[\left|\lambda_{6}\right|^{2}+\left|\lambda_{7}\right|^{2}-\left(\lambda_{1}-\lambda_{2}\right)^{2}\right]-2\left(\left|\lambda_{6}\right|^{2}-\left|\lambda_{7}\right|^{2}\right)^{2}\right] \\
& +\left(\lambda_{1}-\lambda_{2}\right) \operatorname{Im}\left[\left[\Lambda^{*}-2 \lambda_{5}^{*}\left(\lambda_{6}+\lambda_{7}\right)\right]\left(\lambda_{7}-\lambda_{6}\right)\left(\lambda_{7}^{*} \lambda_{6}-\lambda_{6}^{*} \lambda_{7}\right)\right] \\
& -\left(\lambda_{1}-\lambda_{2}\right) \operatorname{Im}\left(\lambda_{5}^{*} \Lambda^{2}\right)-2\left(\left|\lambda_{6}\right|^{2}-\left|\lambda_{7}\right|^{2}\right) \operatorname{Im}\left[\lambda_{5}^{*} \Lambda\left(\lambda_{6}+\lambda_{7}\right)\right] \\
& +\left(\lambda_{1}-\lambda_{2}\right)\left|\lambda_{5}\right|^{2} \operatorname{Im}\left[\lambda_{5}^{*}\left(\lambda_{6}+\lambda_{7}\right)^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& I_{Y 3 Z}=2\left(\left|\lambda_{6}\right|^{2}-\left|\lambda_{7}\right|^{2}\right) \operatorname{Im}\left[Y_{12}\left(\lambda_{6}^{*}+\lambda_{7}^{*}\right)\right] \\
& \quad+\left(Y_{11}-Y_{22}\right)\left[\operatorname{Im}\left[\lambda_{5}^{*}\left(\lambda_{6}+\lambda_{7}\right)^{2}\right]-\left(\lambda_{1}-\lambda_{2}\right) \operatorname{Im}\left(\lambda_{7}^{*} \lambda_{6}\right)\right] \\
& \quad+\left(\lambda_{1}-\lambda_{2}\right)\left[\operatorname{Im}\left(Y_{12} \Lambda^{*}\right)-\operatorname{Im}\left[Y_{12} \lambda_{5}^{*}\left(\lambda_{6}+\lambda_{7}\right)\right]\right] \\
& I_{2 Y 2 Z}=\left(\lambda_{1}-\lambda_{2}\right) \operatorname{Im}\left(Y_{12}^{2} \lambda_{5}^{*}\right)-\operatorname{Im}\left[\left(Y_{12} \lambda_{6}^{*}\right)^{2}\right] \\
& \quad+\operatorname{Im}\left[\left(Y_{12} \lambda_{7}^{*}\right)^{2}\right]+\left[\left(Y_{11}-Y_{22}\right)^{2}-2\left|Y_{12}\right|^{2}\right] \operatorname{Im}\left(\lambda_{7}^{*} \lambda_{6}\right) \\
& \quad-\left(Y_{11}-Y_{22}\right)\left[\operatorname{Im}\left(Y_{12} \Lambda^{*}\right)+\operatorname{Im}\left(Y_{12} \lambda_{5}^{*}\left(\lambda_{6}+\lambda_{7}\right)\right)\right],
\end{aligned}
$$

where

$$
\Lambda \equiv\left(\lambda_{2}-\lambda_{3}-\lambda_{4}\right) \lambda_{6}+\left(\lambda_{1}-\lambda_{3}-\lambda_{4}\right) \lambda_{7}
$$

The expression for $I_{3 Y 3 Z}$ is very long and will not be given here.

Enumerating all possible invariants

An arbitrary invariant is a product of Y^{\prime} 's and Z 's, where all possible indices are tied together (i.e., summing unbarred/barred indices in all possible ways). That is,

$$
J \equiv Z_{a \bar{a}^{\prime} b \bar{b}^{\prime}} Z_{c \bar{c}^{\prime} d \bar{d}^{\prime}} \cdots Y_{g \bar{g}^{\prime}} Y_{h \bar{h}^{\prime}} \cdots
$$

where $\left\{a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, \ldots, g^{\prime}, h^{\prime}, \ldots\right\}$ is a permutation of $\{a, b, c, d, \ldots, g, h, \ldots\}$. If the invariant J contains n_{Z} factors of Z and n_{Y} factors of Y, then there are $\left(2 n_{Z}+n_{Y}\right)$! possible invariants of order $\left(n_{Z}+n_{Y}\right)$. We wish to determine whether $I \equiv \operatorname{Im} J \neq 0$, and how many of these are independent. ${ }^{\dagger}$

Invariant type	number
$5 Z$ or 2 Y 4 Z	$3,628,800$
Y 4 Z or 3 Y 3 Z	362,880
2 Y 3 Z	40,320
6 Z	$479,001,600$
Y 5 Z	$39,916,800$

${ }^{\dagger}$ The imaginary parts of many of these invariants trivially reduce to lower order ones, if one sums over the indices of a given Z (which can produce, e.g., $\operatorname{Tr} Z^{(1)}=$ $\lambda_{1}+\lambda_{2}+2 \lambda_{4}$) or a given Y (which can produce $\left.\operatorname{Tr} Y=Y_{11}+Y_{22}\right)$.

Based on analytic work and exploration via Mathematica:

- All invariants of cubic order or less are manifestly real.
- The imaginary part of any potentially complex quartic invariant is a real linear combination of $I_{Y 3 Z}$ and $I_{2 Y 2 Z}$.
- The imaginary part of any potentially complex fifth-order invariant vanishes if $I_{Y 3 Z}=I_{2 Y 2 Z}=0$.
- The imaginary part of any potentially complex sixth-order invariant that is independent of Y is proportional to $I_{6 Z}$. Moreover, if $Y_{a \bar{b}}=0$ then the imaginary part of any invariant of arbitrary order vanishes if $I_{6 Z}=0$.
- The imaginary part of any potentially complex sixth order invariant that is both cubic in Y and Z respectively is a real linear combination of the invariant $I_{3 Y 3 Z}$ and lower-order invariants that vanish if $I_{Y 3 Z}=I_{2 Y 2 Z}=0$.
- The imaginary part of any invariant of arbitrary order vanishes if $I_{Y 3 Z}=I_{2 Y 2 Z}=I_{6 Z}=I_{3 Y 3 Z}=0$.

To see that all four invariants introduced above are required, we first note that there always exists a basis in which $\lambda_{7}=-\lambda_{6}$. [Proof: noting that

$$
Z^{(1)}=\left(\begin{array}{ll}
\lambda_{1}+\lambda_{4} & \lambda_{6}+\lambda_{7} \\
\lambda_{6}^{*}+\lambda_{7}^{*} & \lambda_{2}+\lambda_{4}
\end{array}\right)
$$

is an hermitian matrix, we can always diagonalize it.] In the $\lambda_{7}=-\lambda_{6}$ basis (this basis is not unique),

$$
\begin{aligned}
I_{6 Z} & =-\left(\lambda_{1}-\lambda_{2}\right)^{3} \operatorname{Im}\left(\lambda_{5}^{*} \lambda_{6}^{2}\right) \\
I_{Y 3 Z} & =-\left(\lambda_{1}-\lambda_{2}\right)^{2} \operatorname{Im}\left(Y_{12} \lambda_{6}^{*}\right) \\
I_{2 Y 2 Z} & =\left(\lambda_{1}-\lambda_{2}\right)\left[\operatorname{Im}\left(Y_{12}^{2} \lambda_{5}^{*}\right)+\left(Y_{11}-Y_{22}\right) \operatorname{Im}\left(Y_{12} \lambda_{6}^{*}\right)\right]
\end{aligned}
$$

First, suppose that $\lambda_{1} \neq \lambda_{2}$. Then consider three cases:

1. $Y_{a \bar{b}}=0 \quad\left[\Longrightarrow I_{Y 3 Z}=I_{2 Y 2 Z}=I_{3 Y 3 Z}=0\right]$
2. $\lambda_{6}=0$ and $Y_{11}=Y_{22} \quad\left[\Longrightarrow I_{6 Z}=I_{Y 3 Z}=I_{3 Y 3 Z}=0\right]$
3. $\lambda_{5}=Y_{11}=Y_{22}=0$ and $\operatorname{Re}\left(Y_{12} \lambda_{6}^{*}\right)=0$

$$
\left[\Longrightarrow I_{6 Z}=I_{2 Y 2 Z}=I_{3 Y 3 Z}=0\right]
$$

In each case there is only one potentially complex invariant.

In a basis where $\lambda_{6}=-\lambda_{7}$,

$$
\begin{aligned}
& I_{3 Y 3 Z}=2 \operatorname{Im}\left(Y_{12}^{3} \lambda_{6}\left(\lambda_{5}^{*}\right)^{2}\right)-4 \operatorname{Im}\left(Y_{12}^{3}\left(\lambda_{6}^{*}\right)^{3}\right) \\
& +\quad\left[\left(Y_{11}-Y_{22}\right)^{2}-6\left|Y_{12}\right|^{2}\right]\left(Y_{11}-Y_{22}\right) \operatorname{Im}\left(\lambda_{6}^{2} \lambda_{5}^{*}\right) \\
& -\left(\lambda_{1}+\lambda_{2}-2 \lambda_{3}-2 \lambda_{4}\right)\left\{\left(Y_{11}-Y_{22}\right) \operatorname{Im}\left(Y_{12}^{2}\left(\lambda_{6}^{*}\right)^{2}\right)\right. \\
& \left.\quad-\operatorname{Im}\left(Y_{12}^{3} \lambda_{5}^{*} \lambda_{6}^{*}\right)+\left[\left(Y_{11}-Y_{22}\right)^{2}-\left|Y_{12}\right|^{2}\right] \operatorname{Im}\left(Y_{12} \lambda_{6} \lambda_{5}^{*}\right)\right\} \\
& +\left\{\left(4\left|\lambda_{6}\right|^{2}-2\left|\lambda_{5}\right|^{2}\right)\left[\left(Y_{11}-Y_{22}\right)^{2}-\left|Y_{12}\right|^{2}\right]\right. \\
& \left.\quad+\left(\lambda_{1}-\lambda_{2}\right)^{2} Y_{11} Y_{22}\right\} \operatorname{Im}\left(Y_{12} \lambda_{6}^{*}\right) \\
& +\left[\left(\lambda_{1}-\right.\right. \\
& \left.\left.\quad \lambda_{3}-\lambda_{4}\right)\left(\lambda_{2}-\lambda_{3}-\lambda_{4}\right)+2\left|\lambda_{6}\right|^{2}-\left|\lambda_{5}\right|^{2}\right] \\
& \quad \times\left(Y_{11}-Y_{22}\right) \operatorname{Im}\left(Y_{12}^{2} \lambda_{5}^{*}\right)
\end{aligned}
$$

If $\lambda_{6}=0$ and $Y_{11}=Y_{22}$, then $I_{3 Y 3 Z}=0$. In this case, only $I_{Y Y Z Z}$ is potentially complex.

If $\lambda_{5}=Y_{11}=Y_{22}=0$ and $\operatorname{Re}\left(Y_{12} \lambda_{6}^{*}\right)=0$, then $I_{3 Y 3 Z}=0$ and $I_{Y 3 Z}$ is potentially complex.

If $\lambda_{1}=\lambda_{2}$ and $\lambda_{7}=-\lambda_{6}$, then $I_{6 Z}=I_{Y 3 Z}=I_{2 Y 2 Z}=0$.
Nevertheless, CP can still be violated if $I_{3 Y 3 Z} \neq 0$.

Dependant invariants

Here are some examples of "new invariants" that are not independent of the four invariants previously identified. Consider:

$$
\begin{aligned}
I_{2 Y 3 Z} & \equiv \operatorname{Im}\left(Z_{a \bar{c} b \bar{e}} Z_{c \bar{f} d \bar{b}} Z_{e \bar{g} f \bar{h}} Y_{g \bar{a}} Y_{h \bar{d}}\right), \\
I_{Y 4 Z} & \equiv \operatorname{Im}\left(Z_{a \bar{b}}^{(2)} Z_{b \bar{b} c \bar{d}} Z_{d \bar{e}}^{(2)} Z_{e \bar{c} f \bar{g}} Y_{g \bar{f}}\right),
\end{aligned}
$$

where $Z_{c \bar{d}}^{(2)} \equiv \delta_{b \bar{a}} Z_{a \bar{b} c \bar{d}}=Z_{a \bar{a} c \bar{d}}$. Then, in the $\lambda_{7}=-\lambda_{6}$ basis,

$$
\begin{aligned}
& I_{2 Y 3 Z}=-2 \lambda_{4} I_{2 Y 2 Z}+(\left.\lambda_{1}-\lambda_{2}\right)\left[4 \operatorname{Im}\left(Y_{12}^{2} \lambda_{6}^{* 2}\right)\right. \\
&+2\left(Y_{11}-Y_{22}\right) \operatorname{Im}\left(Y_{12} \lambda_{5}^{*} \lambda_{6}\right) \\
&\left.+\left(\lambda_{1}+\lambda_{2}-2 \lambda_{3}-2 \lambda_{4}\right) \operatorname{Im}\left(Y_{12}^{2} \lambda_{5}^{*}\right)\right] \\
& I_{Y 4 Z}=-\lambda_{4} I_{Y 3 Z}+\left(\lambda_{1}-\lambda_{2}\right)^{2} \operatorname{Im}\left(Y_{12} \lambda_{5}^{*} \lambda_{6}\right)
\end{aligned}
$$

Noting that $\operatorname{Im}\left(Y_{12}^{2} \lambda_{6}^{* 2}\right)=2 \operatorname{Im}\left(Y_{12} \lambda_{6}^{*}\right) \operatorname{Re}\left(Y_{12} \lambda_{6}^{*}\right)$, etc., it is easy to show that if $I_{2 Y 2 Z}=I_{Y 3 Z}=0$ (in the $\lambda_{7}=-\lambda_{6}$ basis), then $I_{2 Y 3 Z}=I_{Y 4 Z}=0$. But these are invariant (basis-independent) quantities, so this result must be true in any basis.

Thus, $I_{2 Y 2 Z}=I_{Y 3 Z}=0$ is sufficient to guarantee that all potentially complex invariants of order five or less are all real.

Special model cases:

1. $\lambda_{1}=\lambda_{2}, \quad \lambda_{6}=\lambda_{7}, \quad Y_{11}=Y_{22}$, where Y_{12}, λ_{5} and λ_{6} have arbitrary phases.
2. $\lambda_{1}+\lambda_{2}=2\left(\lambda_{3}+\lambda_{4}\right), \quad \lambda_{5}=0, \quad \lambda_{6}=\lambda_{7}$, where Y_{12} and λ_{6} have arbitrary phases.
3. $\lambda_{1}=\lambda_{2}, \quad \lambda_{6}=\lambda_{7}^{*}, \quad Y_{11}=Y_{22}$, and Y_{12} and λ_{5} are real.

All four CP-odd invariants vanish for these three models. Thus, these models explicitly conserve CP (despite the fact that the conditions of Theroem 2 are not necessarily satisfied).

Model 3 arises by imposing a discrete permutation symmetry, $\Phi_{1} \leftrightarrow \Phi_{2}$. If in addition λ_{6} is real, then there exists a minimum of the scalar potential with $v_{1}=v_{2}$ and $\xi \neq 0$. Nevertheless, CP is not spontaneously broken, since one can find a $U(2)$ transformation to a new basis in which all scalar potential parameters are real and $\xi=0(\bmod \pi)$.

Proof of Theorem 3

Suppose there exist a basis in which Y_{12} and $\lambda_{5,6,7}$ are real. Then, in this basis, the imaginary part of any invariant vanishes. But, invariants are basis-independent. Thus, all invariant quantities made up of the $Y_{a \bar{b}}$ and the $Z_{a \bar{b} c \bar{d}}$ are real.

The proof of the converse is more involved. We proceed in four steps. Go to the $\lambda_{7}=-\lambda_{6}$ basis.

1. Suppose that $\lambda_{1} \neq \lambda_{2}$. If $I_{2 Y 2 Z}=I_{Y 3 Z}=I_{6 Z}=0$, then

$$
\operatorname{Im}\left(\lambda_{5}^{*} \lambda_{6}^{2}\right)=\operatorname{Im}\left(Y_{12} \lambda_{6}^{*}\right)=\operatorname{Im}\left(Y_{12}^{2} \lambda_{5}^{*}\right)=0
$$

One can always make a phase rotation $\Phi_{1}^{\dagger} \Phi_{2} \rightarrow e^{i \gamma} \Phi_{1}^{\dagger} \Phi_{2}$ so that λ_{6} is real. If $\lambda_{6}=0$, then the phase γ will be chosen so that λ_{5} is real. Thus, after the phase rotation, we are now in a basis where all Higgs potential parameters are real. (In particular, it follows that $I_{3 Y 3 Z}=0$ as well.)
2. Suppose that $\lambda_{1} \neq \lambda_{2}$ and $Y_{a \bar{b}}=0$. Then, if $I_{6 Z}=0$, it follows that $\operatorname{Im}\left(\lambda_{5}^{*} \lambda_{6}^{2}\right)=0$. The same phase rotation as above implies that a basis exists where all the λ_{i} are real.
3. Suppose that $\lambda_{1}=\lambda_{2}$ and $\lambda_{7}=-\lambda_{6}$. If true in one basis, it is true in all bases. Since $I_{6 Z}=0$, then there exists a basis in which all the λ_{i} are real.

Proof: If $\lambda_{7}=-\lambda_{6}=0$ then one can trivially phase rotate one of the scalar fields such that λ_{5} is real. So assume that $\lambda_{6} \neq 0$ and phase rotate one of the scalar fields so that λ_{6} is real. From this basis, rotate to a new basis with the unitary matrix $U(\theta, \xi, \chi)$:

$$
U(\theta, \xi, \chi)=\left(\begin{array}{cc}
\cos \theta & e^{-i \xi} \sin \theta \\
-e^{i \chi} \sin \theta & e^{i(\chi-\xi)} \cos \theta
\end{array}\right)
$$

Then,

$$
\begin{aligned}
\lambda_{5}^{\prime} e^{2 i \chi}= & \frac{1}{4} s_{2 \theta}^{2}\left[\lambda_{1}+\lambda_{2}-2 \lambda_{345}\right]+\operatorname{Re}\left(\lambda_{5} e^{2 i \xi}\right)+i c_{2 \theta} \operatorname{Im}\left(\lambda_{5} e^{2 i \xi}\right) \\
& \left.-s_{2 \theta} c_{2 \theta} \operatorname{Re}\left[\left(\lambda_{6}-\lambda_{7}\right) e^{i \xi}\right]-i s_{2 \theta} \operatorname{Im}\left[\left(\lambda_{6}-\lambda_{7}\right) e^{i \xi}\right)\right] \\
\lambda_{6}^{\prime} e^{i \chi}= & -\frac{1}{2} s_{2 \theta}\left[\lambda_{1} c_{\theta}^{2}-\lambda_{2} s_{\theta}^{2}-\lambda_{345} c_{2 \theta}-i \operatorname{Im}\left(\lambda_{5} e^{2 i \xi}\right)\right] \\
& +c_{\theta} c_{3 \theta} \operatorname{Re}\left(\lambda_{6} e^{i \xi}\right)+s_{\theta} s_{3 \theta} \operatorname{Re}\left(\lambda_{7} e^{i \xi}\right) \\
& +i c_{\theta}^{2} \operatorname{Im}\left(\lambda_{6} e^{i \xi}\right)+i s_{\theta}^{2} \operatorname{Im}\left(\lambda_{7} e^{i \xi}\right) .
\end{aligned}
$$

Put $\lambda_{1}=\lambda_{2}$ and $\lambda_{7}=-\lambda_{6}$ real in the above equations. Then, look for solutions to $\operatorname{Im} \lambda_{5}^{\prime}=0$ and $\operatorname{Im} \lambda_{6}^{\prime}=0$. These two equations are equivalent to $\tan 2 \chi=4 f_{a} / f_{c}$ and $\tan \chi=2 f_{d} / f_{b}$,
where the f 's are functions of θ, ξ and the argument of λ_{5}. Since $\tan 2 \chi=2 \tan \chi /\left(1-\tan ^{2} \chi\right)$, it follows that we must find a θ and ξ such that:

$$
G(\theta, \xi) \equiv f_{a}\left(f_{b}^{2}-4 f_{d}^{2}\right)-f_{b} f_{c} f_{d}=0
$$

Inserting the explicit forms for the f 's, one easily shows that $G(\pi / 2, \xi)=-G(0, \xi)$, which implies that for any ξ, there exists a θ between 0 and $\pi / 2$ that solves $G(\theta, \xi)=0$. That is, we have found the new basis where all the λ_{i} are real.
4. Suppose that $\lambda_{1}=\lambda_{2}$ and $\lambda_{7}=-\lambda_{6}$. If $I_{3 Y 3 Z}=0$, then there exists a basis in which all the Higgs potential parameters are real.

Proof: Using the result of step 3, it follows that one can find a basis where all the λ_{i} are real. In this basis, $I_{3 Y 3 Z}=2 A B \operatorname{Im} Y_{12}$, where

$$
\begin{aligned}
& A \equiv \lambda_{5}^{2}+\lambda_{5}\left(\lambda_{1}-\lambda_{3}-\lambda_{4}\right)-2 \lambda_{6}^{2} \\
& B \equiv 4 \lambda_{6}\left(\operatorname{Re} Y_{12}\right)^{2}-\left(Y_{11}-Y_{22}\right)\left(\lambda_{3}+\lambda_{4}+\lambda_{5}-\lambda_{1}\right) \operatorname{Re} Y_{12}
\end{aligned}
$$

$$
-\left(Y_{11}-Y_{22}\right)^{2} \lambda_{6}
$$

If $\operatorname{Im} Y_{12}=0$, then our proof is complete. If $\operatorname{Im} Y_{12} \neq 0$, one can make a further change of basis to a new basis where $\operatorname{Im} Y_{12}^{\prime}=\operatorname{Im} \lambda_{5}^{\prime}=\operatorname{Im} \lambda_{6}^{\prime}=0$ if either $A=0$ or $B=0$.

To prove this assertion requires one to construct the unitary matrix $U(\theta, \xi, \chi)$ such that $\operatorname{Im} Y_{12}^{\prime}=\operatorname{Im} \lambda_{5}^{\prime}=\operatorname{Im} \lambda_{6}^{\prime}=0$, where λ_{5}^{\prime} and λ_{6}^{\prime} were given previously and

$$
Y_{12}^{\prime} e^{i \chi}=\frac{1}{2}\left(Y_{22}-Y_{11}\right) s_{2 \theta}+\operatorname{Re}\left(Y_{12} e^{i \xi}\right) c_{2 \theta}+i \operatorname{Im}\left(Y_{12} e^{i \xi}\right)
$$

We have verified that such a U always exists. ${ }^{\ddagger}$ This completes the proof.
${ }^{\ddagger}$ For example, choose $\chi=\pi / 2$ and $\xi=-\pi$. Then, $\operatorname{Im} \lambda_{5}^{\prime}=0$ for arbitrary θ, while $\operatorname{Im} Y_{12}^{\prime}=\operatorname{Im} \lambda_{6}^{\prime}=0$ requires that θ satisfy:

$$
\tan 2 \theta=\frac{2\left|Y_{12}\right| \cos \theta_{12}}{Y_{22}-Y_{11}}, \quad \cot 4 \theta=\frac{1}{4}\left(\lambda_{345}-\lambda_{1}\right)
$$

where $\theta_{12} \equiv \arg Y_{12}$ and $\lambda_{345} \equiv \lambda_{3}+\lambda_{4}+\lambda_{5}$. These two equations for θ are generally inconsistent. But, they are compatible if $B=0$. (Note that $B=0$ is a quadratic equation for $\cos \theta_{12}$.) A different analysis is required if $A=0$.

Conditions for Spontaneous CP-violation

If $I_{6 Z}=I_{Y Z Z Z}=I_{Y Y Z Z}=I_{3 Y 3 Z}=0$, then the Higgs potential is CP-conserving. This means that there exists a family of "real" bases in which all Higgs potential parameters are real. To determine whether CP is spontaneously broken, one must check whether or not the vacuum respects $C P$.

Theorem 4: Given an explicitly CP-conserving 2HDM potential, CP is spontaneously broken if and only if no real basis can be found in which the Higgs vacuum expectation values are real.

A basis independent formulation of this condition was obtained by Lavoura and Silva and by Botella and Silva. The scalar potential minimum condition is given by:

$$
\widehat{v}_{\bar{a}}^{*}\left[Y_{a \bar{b}}+\frac{1}{2} v^{2} Z_{a \bar{b} c} \bar{d} \widehat{v}_{\bar{c}}^{*} \widehat{v}_{d}\right]=0 .
$$

The most general $\mathrm{U}(1)_{\mathrm{EM}}$-conserving vev is:

$$
\left\langle\Phi_{a}\right\rangle=\frac{v}{\sqrt{2}}\binom{0}{\widehat{v}_{a}}, \quad \text { with } \quad \widehat{v}_{a} \equiv\binom{c_{\beta}}{s_{\beta} e^{i \xi}}
$$

Consider three invariants (that depend on the direction of the vev):

$$
\begin{aligned}
-\frac{1}{2} v^{2} I_{1} & \equiv \widehat{v}_{\bar{a}}^{*} Y_{a \bar{b}} Z_{b \bar{d}}^{(1)} \widehat{v}_{d} \\
\frac{1}{4} v^{4} I_{2} & \equiv \widehat{v}_{\bar{b}}^{*} \widehat{v}_{\bar{c}}^{*} Y_{b \bar{e}} Y_{c \bar{f}} Z_{e \bar{a} f \bar{d}} \widehat{v}_{a} \widehat{v}_{d}, \\
\frac{1}{4} v^{2} I_{3} & \equiv \widehat{v}_{\bar{b}}^{*} \widehat{v}_{\bar{c}}^{*} Z_{b \bar{e}}^{(1)}\left[\frac{1}{4} v^{2} Z_{c \bar{f}}^{(1)} Z_{e \bar{a} f \bar{d}}+Y_{e \bar{d}} Z_{c \bar{a}}^{(1)}\right] \widehat{v}_{a} \widehat{v}_{d} .
\end{aligned}
$$

The factors of Y can be eliminated using the scalar potential minimum conditions, resulting in:

$$
\begin{aligned}
I_{1} & \equiv \widehat{v}_{\bar{a}}^{*} \widehat{v}_{\bar{e}}^{*} Z_{a \bar{b} e \bar{f}} Z_{b \bar{d}}^{(1)} \widehat{v}_{d} \widehat{v}_{f}, \\
I_{2} & \equiv \widehat{v}_{\bar{b}}^{*} \widehat{v}_{\bar{c}}^{*} \widehat{v}_{\bar{g}}^{*} \widehat{v}_{\bar{p}}^{*} Z_{b \bar{e} g \bar{h}} Z_{c \bar{f} p \bar{r}} Z_{e \bar{a} f \bar{d}} \widehat{v}_{a} \widehat{v}_{d} \widehat{v}_{h} \widehat{v}_{r}, \\
I_{3} & \equiv \widehat{v}_{\bar{b}}^{*} \widehat{v}_{\bar{c}}^{*} Z_{b \bar{e}}^{(1)}\left[Z_{c \bar{f}}^{(1)} Z_{e \bar{a} f \bar{d}}-2 Z_{c \bar{d}}^{(1)} Z_{e \bar{a} \bar{g}} \widehat{v}_{g} \widehat{v}_{\bar{f}}^{*}\right] \widehat{v}_{a} \widehat{v}_{d} .
\end{aligned}
$$

Evaluating the CP-odd invariants in the so-called Higgs basis, where $\widehat{v}=(1,0)$, we end up with:

$$
\operatorname{Im} I_{1}=\operatorname{Im}\left[Z_{6} Z_{7}^{*}\right], \quad \operatorname{Im} I_{2}=\operatorname{Im}\left[Z_{5}^{*} Z_{6}^{2}\right]
$$

$$
\operatorname{Im} I_{3}=\operatorname{Im}\left[Z_{5}^{*}\left(Z_{6}+Z_{7}\right)^{2}\right]
$$

where Z_{i} are the scalar potential coefficients in the Higgs basis.

Theorem 5: The necessary and sufficient conditions for a CP-invariant scalar Higgs potential and a CP-conserving Higgs vacuum are: $\operatorname{Im} I_{1}=\operatorname{Im} I_{2}=\operatorname{Im} I_{3}=0$.

Although there are at most two independent relative phases among I_{1}, I_{2} and I_{3}, there are cases where two of the three invariants are real, so all three must be checked. That is,

$$
\begin{array}{lll}
\operatorname{Im} I_{1}=\operatorname{Im} I_{2}=0 & \text { if } & Z_{6}=0, \\
\operatorname{Im} I_{1}=\operatorname{Im} I_{3}=0 & \text { if } & Z_{7}=-Z_{6}, \\
\operatorname{Im} I_{2}=\operatorname{Im} I_{3}=0 & \text { if } & Z_{5}=0,
\end{array}
$$

Note: additional CP-odd invariants involving the Higgsfermion Yukawa matrices enter when the Higgs-fermion couplings are included.

Unfinished business

- What is the physical significance of the four explicit CPviolating invariants? Which (if any) could be measured in precision Higgs studies at the ILC?
- Express all Higgs couplings in terms of invariants in the most general CP-violating 2HDM (and explore the approach to the decoupling limit).
- The CP-odd invariants are induced at the one-loop level in the MSSM. Find relations among these invariants which are perhaps a remnant of the underlying supersymmetry.
- Extend the basis independent formalism to include Higgs couplings to other sectors of the theory. (Some work along these lines already exists-see $C P$ Violation by G. Branco et al. and references contained therein.)

[^0]: *We defer the question of whether CP is spontaneously broken if the Higgs potential is manifestly CP-conserving.

