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Motivation

The Higgs sector of the minimal supersymmetric extension

of the Standard Model (MSSM) is a constrained two-Higgs-

doublet model (2HDM). However, at one-loop all possible

2HDM interactions allowed by gauge invariance are generated

(due to SUSY-breaking interactions).

Thus, the Higgs sector of the MSSM is in reality the most

general (CP-violating) 2HDM model—albeit with certain

relations among the Higgs sector parameters determined by

the fundamental parameters of the broken supersymmetric

model.

The general 2HDM consists of two identical (hypercharge-

one) scalar doublets Φ1 and Φ2. To determine the physical

quantities of the theory, one must develop basis-independent

techniques.



Questions:

• Is the Higgs sector CP-violating?

• If yes, is the CP-violation explicit or spontaneous?

One can always arrange the vacuum expectation values (vevs)

of the Higgs field to take the form:

〈Φ1〉 =
1√
2

(
0

v1

)
, 〈Φ2〉 =

1√
2

(
0

v2 eiξ

)
,

where v1 and v2 are real and non-negative, 0 ≤ ξ < 2π and

v2 ≡ v2
1 + v2

2 = 4m2
W/g2 = (246 GeV)2.

But a further phase redefinition Φ2 → eiξΦ2 removes the

phase from the vevs. So, how can one really be sure about

the nature of Higgs-mediated CP-violation?

Compare this situation with broken global symmetries. The

existence or non-existence of mass for a (would-be) Goldstone

boson provides the evidence for or against a spontaneously

broken global symmetry.



The General Two-Higgs-Doublet Model

Consider the 2HDM potential in a generic basis:

V = m
2
11Φ

†
1Φ1 + m

2
22Φ

†
2Φ2 − [m

2
12Φ

†
1Φ2 + h.c.] + 1

2λ1(Φ
†
1Φ1)

2

+ 1
2λ2(Φ

†
2Φ2)

2
+ λ3(Φ

†
1Φ1)(Φ

†
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1Φ2)(Φ

†
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+
n

1
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†
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2
+
h
λ6(Φ

†
1Φ1) + λ7(Φ

†
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i
Φ

†
1Φ2 + h.c.

o

A basis change consists of a U(2) transformation Φa → Uab̄Φb (and

Φ†
ā → Φ†

b̄
U†

bā). Here, U(2)∼= SU(2)×U(1)Y. The parameters m2
11,

m2
22, m2

12, and λ1, . . . , λ7 are transformed under the “flavor”-SU(2)

transformation. To identify invariants, write :

V = Yab̄Φ
†
āΦb + 1

2Zab̄cd̄(Φ
†
āΦb)(Φ

†
c̄Φd) ,

where Zab̄cd̄ = Zcd̄ab̄ and hermiticity implies

Yab̄ = (Ybā)
∗ , Zab̄cd̄ = (Zbādc̄)

∗ .

The barred indicies help keep track of which indices transform with U

and which transform with U†. For example, Yab̄ → Uac̄Ycd̄U
†
db̄

and

Zab̄cd̄ → UaēU
†
fb̄

UcḡU
†
hd̄

Zef̄gh̄.



Conditions for explicit CP-violation

Here, we consider the conditions for Higgs-mediated CP-

violation due to an explicitly CP-violating Higgs potential.∗

Theorem 1: The Higgs potential is CP-conserving if and

only if there exists a basis in which all Higgs potential

parameters are real.

Potentially complex Higgs potential parameters are: m2
12, λ5,

λ6 and λ7. Of course, these are basis-dependent quantities.

Nevertheless, the following result should be noted:

Theorem 2: In a generic basis, the following is a sufficient

(but not a necessary) condition for an explicitly CP-

conserving 2HDM scalar potential:

Im ([m2
12]

2λ∗
5) = Im (m2

12λ
∗
6) = Im (m2

12λ
∗
7)

= Im (λ∗
5λ

2
6) = Im (λ∗

5λ
2
7) = Im (λ∗

6λ7) = 0 .
∗We defer the question of whether CP is spontaneously broken if the Higgs potential

is manifestly CP-conserving.



Clearly, the latter is not good enough. We shall instead

provide a set of basis-independent conditions. The complete

set of conditions is summarized by the following result:

Theorem 3: The following are the necessary and sufficient

conditions for an explicitly CP-conserving 2HDM scalar

potential:

I3Y 3Z = 0 , if λ1 = λ2 and λ6 = −λ7

IY 3Z = I2Y 2Z = I6Z = 0 , otherwise

where

IY 3Z ≡ Im(YdāZ
(1)
ac̄ Z

(1)

eb̄
Zbēcd̄) ,

I2Y 2Z ≡ Im(Yab̄Ycd̄Zbādf̄Z
(1)
fc̄ ) ,

I6Z ≡ Im(Zab̄cd̄Z
(1)

bf̄
Z

(1)

dh̄
Zfājk̄Zkj̄mn̄Znm̄hc̄) ,

I3Y 3Z ≡ Im(Yqf̄Yhb̄YgāZeh̄fq̄ZcēdḡZac̄bd̄) .

Above, we have introduced:

Z
(1)

ad̄
≡ δbc̄Zab̄cd̄ = Zab̄bd̄ .



Explicit results

I6Z = 2|λ5|2Im[(λ∗
7λ6)

2] − Im[λ∗
5

2
(λ6 − λ7)(λ6 + λ7)

3]

+2Im(λ∗
7λ6)

h
|λ5|2[|λ6|2 + |λ7|2 − (λ1 − λ2)

2] − 2(|λ6|2 − |λ7|2)2
i

+(λ1 − λ2)Im
h
[Λ

∗ − 2λ
∗
5(λ6 + λ7)](λ7 − λ6)(λ

∗
7λ6 − λ

∗
6λ7)

i

−(λ1 − λ2)Im(λ
∗
5Λ

2
) − 2(|λ6|2 − |λ7|2)Im[λ

∗
5Λ(λ6 + λ7)]

+(λ1 − λ2)|λ5|2Im[λ∗
5(λ6 + λ7)

2] ,

IY 3Z = 2(|λ6|2 − |λ7|2)Im[Y12(λ
∗
6 + λ∗

7)]

+(Y11 − Y22)
h
Im[λ

∗
5(λ6 + λ7)

2
] − (λ1 − λ2)Im(λ

∗
7λ6)

i

+(λ1 − λ2)
h
Im(Y12Λ

∗
) − Im[Y12λ

∗
5(λ6 + λ7)]

i
,

I2Y 2Z = (λ1 − λ2)Im(Y
2
12λ

∗
5) − Im[(Y12λ

∗
6)

2
]

+Im[(Y12λ
∗
7)

2] + [(Y11 − Y22)
2 − 2|Y12|2 ]Im(λ∗

7λ6)

−(Y11 − Y22)
ˆ
Im(Y12Λ

∗
) + Im(Y12λ

∗
5(λ6 + λ7))

˜
,

where

Λ ≡ (λ2 − λ3 − λ4)λ6 + (λ1 − λ3 − λ4)λ7 .

The expression for I3Y 3Z is very long and will not be given here.



Enumerating all possible invariants

An arbitrary invariant is a product of Y ’s and Z’s, where all possible

indices are tied together (i.e., summing unbarred/barred indices in all

possible ways). That is,

J ≡ Zaā′bb̄′Zcc̄′dd̄′ · · ·Ygḡ′Yhh̄′ · · · ,

where {a′, b′, c′, d′, . . . , g′, h′, . . .} is a permutation of

{a, b, c, d, . . . , g, h, . . .}. If the invariant J contains nZ factors of Z

and nY factors of Y , then there are (2nZ + nY )! possible invariants

of order (nZ + nY ). We wish to determine whether I ≡ Im J 6= 0,

and how many of these are independent.†

Invariant type number

5Z or 2Y4Z 3,628,800

Y4Z or 3Y3Z 362,880

2Y3Z 40,320

6Z 479,001,600

Y5Z 39,916,800

†The imaginary parts of many of these invariants trivially reduce to lower order

ones, if one sums over the indices of a given Z (which can produce, e.g., Tr Z(1) =

λ1 + λ2 + 2λ4) or a given Y (which can produce Tr Y = Y11 + Y22).



Based on analytic work and exploration via Mathematica:

• All invariants of cubic order or less are manifestly real.

• The imaginary part of any potentially complex quartic

invariant is a real linear combination of IY 3Z and I2Y 2Z.

• The imaginary part of any potentially complex fifth-order

invariant vanishes if IY 3Z = I2Y 2Z = 0.

• The imaginary part of any potentially complex sixth-order

invariant that is independent of Y is proportional to I6Z.

Moreover, if Yab̄ = 0 then the imaginary part of any

invariant of arbitrary order vanishes if I6Z = 0.

• The imaginary part of any potentially complex sixth order

invariant that is both cubic in Y and Z respectively

is a real linear combination of the invariant I3Y 3Z and

lower-order invariants that vanish if IY 3Z = I2Y 2Z = 0.

• The imaginary part of any invariant of arbitrary order

vanishes if IY 3Z = I2Y 2Z = I6Z = I3Y 3Z = 0.



To see that all four invariants introduced above are required,

we first note that there always exists a basis in which

λ7 = −λ6. [Proof: noting that

Z(1) =

(
λ1 + λ4 λ6 + λ7

λ∗
6 + λ∗

7 λ2 + λ4

)

is an hermitian matrix, we can always diagonalize it.] In the

λ7 = −λ6 basis (this basis is not unique),

I6Z = −(λ1 − λ2)
3 Im(λ∗

5λ
2
6) ,

IY 3Z = −(λ1 − λ2)
2 Im(Y12λ

∗
6) ,

I2Y 2Z = (λ1 − λ2)
[
Im(Y 2

12λ
∗
5) + (Y11 − Y22)Im(Y12λ

∗
6)
]

.

First, suppose that λ1 6= λ2. Then consider three cases:

1. Yab̄ = 0 [=⇒ IY 3Z = I2Y 2Z = I3Y 3Z = 0]

2. λ6 = 0 and Y11 = Y22 [=⇒ I6Z = IY 3Z = I3Y 3Z = 0]

3. λ5 = Y11 = Y22 = 0 and Re(Y12λ
∗
6) = 0

[=⇒ I6Z = I2Y 2Z = I3Y 3Z = 0].

In each case there is only one potentially complex invariant.



In a basis where λ6 = −λ7,

I3Y 3Z = 2Im(Y
3
12λ6(λ

∗
5)

2
) − 4Im(Y

3
12(λ

∗
6)

3
)

+[(Y11 − Y22)
2 − 6|Y12|2](Y11 − Y22)Im(λ2

6λ
∗
5)

−(λ1 + λ2 − 2λ3 − 2λ4)
n

(Y11 − Y22)Im(Y 2
12(λ

∗
6)

2)

−Im(Y 3
12λ

∗
5λ

∗
6) +

h
(Y11 − Y22)

2 − |Y12|2
i
Im(Y12λ6λ

∗
5)
o

+
n

(4|λ6|2 − 2|λ5|2)
h
(Y11 − Y22)

2 − |Y12|2
i

+(λ1 − λ2)
2
Y11Y22

o
Im(Y12λ

∗
6)

+
h
(λ1 − λ3 − λ4)(λ2 − λ3 − λ4) + 2|λ6|2 − |λ5|2

i

×(Y11 − Y22)Im(Y
2
12λ

∗
5) .

If λ6 = 0 and Y11 = Y22, then I3Y 3Z = 0. In this case, only

IY Y ZZ is potentially complex.

If λ5 = Y11 = Y22 = 0 and Re(Y12λ
∗
6) = 0, then I3Y 3Z =0

and IY 3Z is potentially complex.

If λ1 = λ2 and λ7 = −λ6, then I6Z = IY 3Z = I2Y 2Z = 0.

Nevertheless, CP can still be violated if I3Y 3Z 6= 0.



Dependant invariants

Here are some examples of “new invariants” that are not independent of

the four invariants previously identified. Consider:

I2Y 3Z ≡ Im(Zac̄bēZcf̄db̄Zeḡfh̄YgāYhd̄) ,

IY 4Z ≡ Im (Z
(2)

ab̄
Zbācd̄Z

(2)
dē Zec̄fḡYgf̄) ,

where Z
(2)

cd̄
≡ δbāZab̄cd̄ = Zaācd̄. Then, in the λ7 = −λ6 basis,

I2Y 3Z = −2λ4 I2Y 2Z + (λ1 − λ2)
h
4 Im (Y 2

12λ
∗2
6 )

+2 (Y11 − Y22) Im (Y12λ
∗
5λ6)

+(λ1 + λ2 − 2λ3 − 2λ4) Im (Y
2
12λ

∗
5)
i

,

IY 4Z = −λ4 IY 3Z + (λ1 − λ2)
2
Im (Y12λ

∗
5λ6) .

Noting that Im (Y 2
12λ

∗2
6 ) = 2 Im (Y12λ

∗
6) Re (Y12λ

∗
6), etc., it is

easy to show that if I2Y 2Z = IY 3Z = 0 (in the λ7 = −λ6 basis),

then I2Y 3Z = IY 4Z = 0. But these are invariant (basis-independent)

quantities, so this result must be true in any basis.

Thus, I2Y 2Z = IY 3Z = 0 is sufficient to guarantee that all potentially

complex invariants of order five or less are all real.



Special model cases:

1. λ1 = λ2, λ6 = λ7, Y11 = Y22, where Y12, λ5 and λ6

have arbitrary phases.

2. λ1 + λ2 = 2(λ3 + λ4), λ5 = 0, λ6 = λ7, where Y12

and λ6 have arbitrary phases.

3. λ1 = λ2, λ6 = λ∗
7, Y11 = Y22, and Y12 and λ5 are real.

All four CP-odd invariants vanish for these three models.

Thus, these models explicitly conserve CP (despite the

fact that the conditions of Theroem 2 are not necessarily

satisfied).

Model 3 arises by imposing a discrete permutation symmetry,

Φ1 ↔ Φ2. If in addition λ6 is real, then there exists a

minimum of the scalar potential with v1 = v2 and ξ 6= 0.

Nevertheless, CP is not spontaneously broken, since one can

find a U(2) transformation to a new basis in which all scalar

potential parameters are real and ξ = 0 (mod π).



Proof of Theorem 3

Suppose there exist a basis in which Y12 and λ5,6,7 are real. Then, in

this basis, the imaginary part of any invariant vanishes. But, invariants

are basis-independent. Thus, all invariant quantities made up of the Yab̄

and the Zab̄cd̄ are real.

The proof of the converse is more involved. We proceed in four steps.

Go to the λ7 = −λ6 basis.

1. Suppose that λ1 6= λ2. If I2Y 2Z = IY 3Z = I6Z = 0, then

Im (λ∗
5λ

2
6) = Im (Y12λ

∗
6) = Im (Y 2

12λ
∗
5) = 0 .

One can always make a phase rotation Φ†
1Φ2 → eiγΦ†

1Φ2 so that λ6

is real. If λ6 = 0, then the phase γ will be chosen so that λ5 is real.

Thus, after the phase rotation, we are now in a basis where all Higgs

potential parameters are real. (In particular, it follows that I3Y 3Z = 0

as well.)

2. Suppose that λ1 6= λ2 and Yab̄ = 0. Then, if I6Z = 0, it follows

that Im (λ∗
5λ

2
6) = 0. The same phase rotation as above implies that a

basis exists where all the λi are real.



3. Suppose that λ1 = λ2 and λ7 = −λ6. If true in one basis, it is true

in all bases. Since I6Z = 0, then there exists a basis in which all the λi

are real.

Proof: If λ7 = −λ6 = 0 then one can trivially phase rotate one of the

scalar fields such that λ5 is real. So assume that λ6 6= 0 and phase

rotate one of the scalar fields so that λ6 is real. From this basis, rotate

to a new basis with the unitary matrix U(θ, ξ, χ):

U(θ, ξ, χ) =

 
cos θ e−iξ sin θ

−eiχ sin θ ei(χ−ξ) cos θ

!
.

Then,

λ′
5e

2iχ = 1
4s

2
2θ [λ1 + λ2 − 2λ345] + Re(λ5e

2iξ) + ic2θIm(λ5e
2iξ)

−s2θc2θRe[(λ6 − λ7)e
iξ
] − is2θIm[(λ6 − λ7)e

iξ
)] ,

λ
′
6e

iχ
= −1

2s2θ

h
λ1c

2
θ − λ2s

2
θ − λ345c2θ − iIm(λ5e

2iξ
)
i

+cθc3θRe(λ6e
iξ) + sθs3θRe(λ7e

iξ)

+ic2
θIm(λ6e

iξ) + is2
θIm(λ7e

iξ) .

Put λ1 = λ2 and λ7 = −λ6 real in the above equations. Then,

look for solutions to Im λ′
5 = 0 and Im λ′

6 = 0. These two

equations are equivalent to tan 2χ = 4fa/fc and tan χ = 2fd/fb,



where the f ’s are functions of θ, ξ and the argument of λ5. Since

tan 2χ = 2 tan χ/(1 − tan2 χ), it follows that we must find a θ and

ξ such that:

G(θ, ξ) ≡ fa(f
2
b − 4f2

d) − fbfcfd = 0 .

Inserting the explicit forms for the f ’s, one easily shows that

G(π/2, ξ) = −G(0, ξ), which implies that for any ξ, there exists a θ

between 0 and π/2 that solves G(θ, ξ) = 0. That is, we have found

the new basis where all the λi are real.

4. Suppose that λ1 = λ2 and λ7 = −λ6. If I3Y 3Z = 0, then there

exists a basis in which all the Higgs potential parameters are real.

Proof: Using the result of step 3, it follows that one can find a basis

where all the λi are real. In this basis, I3Y 3Z = 2AB Im Y12, where

A ≡ λ
2
5 + λ5(λ1 − λ3 − λ4) − 2λ

2
6 ,

B ≡ 4λ6 (Re Y12)
2 − (Y11 − Y22)(λ3 + λ4 + λ5 − λ1) Re Y12

−(Y11 − Y22)
2
λ6 .

If Im Y12 = 0, then our proof is complete. If Im Y12 6= 0,

one can make a further change of basis to a new basis where

Im Y ′
12 = Im λ′

5 = Im λ′
6 = 0 if either A = 0 or B = 0.



To prove this assertion requires one to construct the unitary matrix

U(θ, ξ, χ) such that Im Y ′
12 = Im λ′

5 = Im λ′
6 = 0, where λ′

5 and

λ′
6 were given previously and

Y ′
12e

iχ = 1
2(Y22 − Y11)s2θ + Re(Y12e

iξ)c2θ + i Im(Y12e
iξ) .

We have verified that such a U always exists.‡ This completes the proof.

‡For example, choose χ = π/2 and ξ = −π. Then, Im λ′
5 = 0 for arbitrary θ,

while Im Y ′
12 = Im λ′

6 = 0 requires that θ satisfy:

tan 2θ =
2|Y12| cos θ12

Y22 − Y11
, cot 4θ = 1

4(λ345 − λ1) ,

where θ12 ≡ arg Y12 and λ345 ≡ λ3 + λ4 + λ5. These two equations for θ are

generally inconsistent. But, they are compatible if B = 0. (Note that B = 0 is a

quadratic equation for cos θ12.) A different analysis is required if A = 0.



Conditions for Spontaneous CP-violation

If I6Z = IY ZZZ = IY Y ZZ = I3Y 3Z = 0, then the Higgs potential is

CP-conserving. This means that there exists a family of “real” bases

in which all Higgs potential parameters are real. To determine whether

CP is spontaneously broken, one must check whether or not the vacuum

respects CP.

Theorem 4: Given an explicitly CP-conserving 2HDM

potential, CP is spontaneously broken if and only if no real

basis can be found in which the Higgs vacuum expectation

values are real.

A basis independent formulation of this condition was obtained by

Lavoura and Silva and by Botella and Silva. The scalar potential

minimum condition is given by:

bv ∗
ā

h
Yab̄ + 1

2v
2
Zab̄cd̄bv ∗

c̄ bvd

i
= 0 .

The most general U(1)EM-conserving vev is:

〈Φa〉 =
v√
2

 
0

bva

!
, with bva ≡

 
cβ

sβ eiξ

!
.



Consider three invariants (that depend on the direction of the vev):

−1
2v

2I1 ≡ bv∗
āYab̄Z

(1)

bd̄
bvd ,

1
4v

4
I2 ≡ bv∗

b̄bv
∗
c̄YbēYcf̄Zeāfd̄bvabvd ,

1
4v

2
I3 ≡ bv∗

b̄bv
∗
c̄Z

(1)
bē

h
1
4v

2
Z

(1)

cf̄
Zeāfd̄ + Yed̄Z

(1)
cā

i
bvabvd .

The factors of Y can be eliminated using the scalar potential minimum

conditions, resulting in:

I1 ≡ bv∗
ābv

∗
ēZab̄ef̄Z

(1)

bd̄
bvdbvf ,

I2 ≡ bv∗
b̄bv

∗
c̄bv

∗
ḡbv

∗
p̄Zbēgh̄Zcf̄pr̄Zeāfd̄bvabvdbvhbvr ,

I3 ≡ bv∗
b̄bv

∗
c̄Z

(1)
bē

h
Z

(1)

cf̄
Zeāfd̄ − 2Z

(1)

cd̄
Zeāfḡbvgbv∗

f̄

i
bvabvd .

Evaluating the CP-odd invariants in the so-called Higgs basis,

where v̂ = (1, 0), we end up with:

Im I1 = Im[Z6Z
∗
7 ] , Im I2 = Im[Z∗

5Z2
6 ] ,

Im I3 = Im[Z∗
5(Z6 + Z7)

2] ,

where Zi are the scalar potential coefficients in the Higgs

basis.



Theorem 5: The necessary and sufficient conditions for

a CP-invariant scalar Higgs potential and a CP-conserving

Higgs vacuum are: Im I1 = Im I2 = Im I3 = 0.

Although there are at most two independent relative phases

among I1, I2 and I3, there are cases where two of the three

invariants are real, so all three must be checked. That is,

Im I1 = Im I2 = 0 if Z6 = 0 ,

Im I1 = Im I3 = 0 if Z7 = −Z6 ,

Im I2 = Im I3 = 0 if Z5 = 0 ,

Note: additional CP-odd invariants involving the Higgs-

fermion Yukawa matrices enter when the Higgs-fermion

couplings are included.



Unfinished business

• What is the physical significance of the four explicit CP-

violating invariants? Which (if any) could be measured in

precision Higgs studies at the ILC?

• Express all Higgs couplings in terms of invariants in the

most general CP-violating 2HDM (and explore the approach

to the decoupling limit).

• The CP-odd invariants are induced at the one-loop level in

the MSSM. Find relations among these invariants which are

perhaps a remnant of the underlying supersymmetry.

• Extend the basis independent formalism to include Higgs

couplings to other sectors of the theory. (Some work along

these lines already exists—see CP Violation by G. Branco

et al. and references contained therein.)


