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The simplest extension of the SM —

a Two Higgs Doublet Model (2HDM ):

L = LSM
gf + LH + LY ;

LSM
gf – SM interaction, gauge bosons + fermions

LH ≡ T − V – Higgs lagrangian ,

T – Higgs kinetic term, V – Higgs potential ,

LY – Yukawa interaction of fermions to scalars .

T = (Dµφ1)
†(Dµφ1) + (Dµφ2)

†(Dµφ2)

+ κ(Dµφ1)
†(Dµφ2) + κ∗(Dµφ2)

†(Dµφ1) ,

V = λ1
2 (φ†1φ1)

2 + λ2
2 (φ†2φ2)

2 + λ3(φ
†
1φ1)(φ

†
2φ2)

+λ4(φ
†
1φ2)(φ

†
2φ1) + 1

2

[
λ5(φ

†
1φ2)

2 + h.c.
]

+
{[

λ6(φ
†
1φ1) + λ7(φ

†
2φ2)

]
(φ†1φ2) + h.c.

}
+M(φi)

M(φi) = −1
2

{
m2

11(φ
†
1φ1) + m2

22(φ
†
2φ2)

+
[
m2

12(φ
†
1φ2) + h.c.

]}
.

λ5−7, κ and m12 are generally complex.
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Reparameterization
invariance

Two fields with identical quantum numbers ⇒
Model can be described both in terms of fields

φi and in terms of fields φ′i:
(

φ′1
φ′2

)
= F̂

(
φ1
φ2

)
,

F̂ = e−iρ0

(
cos θ eiρ/2 sin θ ei(τ−ρ/2)

− sin θ e−i(τ−ρ/2) cos θ e−iρ/2

)
.

In the κ = 0 case this transformation does not

change the form of kinetic term but induce the

changes of coefficients of Lagrangian, which we

call a reparametrization transformation – RPT.
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Denoting c = cos θ, s = sin θ, µ2
12 = Re(m2

12e−iτ),

λ̃5 = λ5e−2iτ , λ̃6,7 = λ6,7e−iτ , the RPT is de-

scribed by eq-s:

λ′1 = c2λ1 + s2λ2 − csΦ− 2csRe (λ̃6 + λ̃7),
λ′2 = s2λ1 + c2λ2 − csΦ + 2csRe (λ̃6 + λ̃7),

λ′3 = λ3 + csΦ, λ′4 = λ4 + csΦ,

e2iρλ′5=λ5+eiτ
[
csΦ+2is2 Im λ̃5−2ics Im (λ̃6−λ̃7)

]
,

λ′6 = e−iρ
[
c2λ6 − s2λ7 + eiτ

2 cs(λ1 − λ2 + Ψ)
]
,

λ′7 = e−iρ
[
c2λ7 − s2λ6 + eiτ

2 cs(λ1 − λ2 −Ψ)
]
,

(m′)211 = c2m2
11 + s2m2

22 − 2csµ2
12,

(m′)222 = s2m2
11 + c2m2

22 + 2csµ2
12,

(m′)212=e−iρ
{
m2

12+eiτ
[
cs(m2

11 −m2
22)− 2s2µ2

12

]}
.

Φ0 = λ1 + λ2 − 2(λ3 + λ4 + Re λ̃5),

Φ = csΦ0 + 2(c2 − s2)Re (λ̃6 − λ̃7),

Ψ = (c2 − s2)Φ0 − 8csRe (λ̃6 − λ̃7) + 2i Im λ̃5.
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A set of Higgs Lagrangians, obtained from each
other by this transformations, forms the repa-
rametrization equivalent space of Lagrangians
(RPES) – a 3-dimensional subspace of the en-
tire space of Lagrangians. The different La-
grangians within this RPES are physically equiv-
alent. That is

reparametrization invariance (RPI)
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Higgs basis family of Lagrangians (v1=v, v2=0)

real vacuum family of Lagrangians (v1, v2 real)
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Soft Z2 violation + Model II family of Lagrangians

Schematic presentation of RPES. Different
strips represent families of Lagrangians with
different explicit properties. A particular case

where the soft Z2 violating and Model II
Lagrangians families coincide is shown.
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Some parameters of theory which are treated

often as physical are in fact reparametrization

dependent. The most important example – a

ratio of v.e.v.’s of scalar fields, tanβ.

E.g., under the RPT with ρ = ξ, τ = 0

β ⇒ β + θ .
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Particular case
at θ = 0:

2. Rephasing invariance
under the global rephasing transformation

φi → e−iρiφi, (i = 1,2),

ρ0 = (ρ1 + ρ2)/2, ρ = ρ2 − ρ1(≡ 2ρ′),
This transformation leads to a rephasing trans-

formation of the parameters:

λ1−4 → λ1−4 , m2
ii → m2

ii , m2
12 → m2

12eiρ

λ5 → λ5 e2iρ , λ6,7 → λ6,7 eiρ , κ → κ eiρ .

By construction, the Lagrangian with coefficients

λi, m2
ij and with new coefficients describe the

same physical reality. We call this property a

rephasing invariance

This invariance is extended to the description

of a whole system of scalars and fermions by

adding of similar transformations for the phases

of fermion fields and Yukawa couplings.
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The Z2 symmetry
and its violations

The 2HDM generally give a CP� at EWSB .

In the most general form of LY large FCNC effects

become possible.

Experiment: CP� and FCNC effects are weak.

⇓
The natural construction of 2HDM should

start with the lagrangian having additional sym-

metry which forbids a CP� and FCNC effects.
⇓

That is Z2 symmetry under independent trans-

formations for both fields

φ1 → −φ1, φ2 → φ2,

φ1 → φ1, φ2 → −φ2, ,

which forbids (φ1, φ2) mixing.

This symmetry can be weakly broken to open

door for weak CP� and FCNC effects.
Z2 conserving case: m12 = λ6 = λ7 = κ = 0.

Soft violation of Z2: dim. 2 operator with m12

(retained unmixed φi fields at small distances).

Hard violation of Z2: + dim. 4 operators

with λ6, λ7, κ – looks unnatural

since (φ1, φ2) mixing retains at small distances.
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The case of hidden soft Z2 violation

Let: physical model can be described by Lagran-

gian Ls with exact or softly violated Z2 symme-

try. The general RPT converts Ls ⇒ Lhs – L
of hidden soft Z2 violation (λ6, λ7 6= 0, κ = 0).

We first apply the RPT Ls ⇒ LR
s , making λ5 real

(still m2
12 can be complex leaving open an oppor-

tunity for CP violation). Then a general RPT

transforms LR
s ⇒ Lhs with quartic sector, which

is described by 8 independent parameters (λ1−5

and θ, ρ, τ) instead of 10 independent parame-

ters of the general Lagrangian (λ1−4, Reλ5−7,

Imλ5−7):

λ′1 = c2λ1 + s2λ2 − csΦ, λ′2 = s2λ1 + c2λ2 − csΦ,

λ′3 = λ3 + csΦ, λ′4 = λ4 + csΦ,

λ′5 = e−2iρλ5 + e2iτ [csΦ + 2is2λ5 sin 2τ ],

λ′6 = ei(τ−ρ)

2 [cs(λ1 − λ2) + A] ,

λ′7 = ei(τ−ρ)

2 [cs(λ1 − λ2)−A] ,

with

A = (c2 − s2)Φ + 2icsλ5 sin 2τ,

Φ = cs[λ1 + λ2 − 2(λ3 + λ4 + λ5 cos 2τ)] .
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These eq-s allow to find parameters of the La-

grangian LR
s via parameters of Lhs:

1)
λ′6 + λ′7
λ
′∗
6 + λ

′∗
7

= e2i(τ−ρ) ⇒ τ − ρ ;

2)
λ′6 + λ′7
λ′1 − λ′2

= ei(τ−ρ)tan2θ
2 ⇒ θ ;

3) e−i(τ−ρ)(λ′6−λ′7)=(c2 − s2)Φ+2icsλ5 sin 2τ
⇒ Φ and 2csλ5 sin 2τ ;

4) e−iρλ5 = λ′5 − e2i(τ−ρ)[csΦ + 2is2 sin 2τλ5]
⇒ ρ and λ5 ;

5) Finally, all remaining quantities λ1−4 can be

determined easily from the first four equations.
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True hard violation of Z2

1) The (φ1, φ2) mixing retains at small distances
– very unnatural .

2) The mixed kinetic terms (with κ, κ∗) can be
removed by the nonunitary transformation:

(φ ′1 , φ ′2) →


√
κ∗φ1 +

√
κφ2

2
√
|κ|(1 + |κ|)

±
√
κ∗φ1 −

√
κφ2

2
√
|κ|(1− |κ|)


 . ¨

Starting from the case κ = 0, λ6,7 6= 0, the
renormalization of quadratically divergent, non-
diagonal two-point functions leads to κ 6= 0 ⇒
λ6, λ7, κ are running ⇒ all of these terms should
be included in Lagrangian on the same foot-
ing ⇒ the treatment of the hard violation of Z2
symmetry without κ terms (as in most of papers
considering this ”most general 2HDM potential”)
is inconsistent.

**************************
The diagonalization ¨ destroy relatively simple
relations for the masses of the Higgs bosons,
usually written.

**************************
We present relations for a case of hard violation
of Z2 symmetry at κ = 0 keeping in mind that
the loop corrections can change results signifi-
cantly.
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The extremes of the potential
define the v.e.v.’s 〈φi〉 via

∂V

∂φi
(φ1 = 〈φ1〉, φ2 = 〈φ2〉) = 0.

With accuracy to the choice of z axis in the weak

isospin space, most general solution has form

〈φ1〉 = 1√
2

(
0
v1

)
, 〈φ2〉 = 1√

2




u

v2eiξ


 ;

Denote

y1 = 〈φ†1〉〈φ1〉, y2 = 〈φ†2〉〈φ2〉, y3 = 〈φ†1〉〈φ2〉.
There are 2 solutions of extremum condition

1) with y∗3y3 − y1y2 6= 0⇒ u 6= 0 .

The v.e.v.’s are given by eq-s
λ1y1+λ3y2+λ∗6y∗3 + λ6y3 = m2

11/2,

λ2y2+λ3y1+λ∗7y∗3 + λ7y3 = m2
22/2,

λ4y∗3+λ5y3+λ6y1 + λ7y2 = m2
12/2.

For some set of parameters of L this solution

describe minimum of the potential

⇒ Charged vacuum, with massive photon !
It does not describe reality.
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Standard vacuum
Another solution of extremum condition

2) with y∗3y3 = y1y2 ⇒ u = 0 .

⇒ 〈φ1〉 = 1√
2

(
0
v1

)
, 〈φ2〉 = 1√

2




0

v2eiξ


 .

Standard v1 = v cosβ, v2 = v sinβ with the

SM constraint v =
(
GF

√
2

)−1/2
= 246 GeV.

That is minimum of potential for those pa-

rameters of potential at which all eigenvalues

of effective mass squared matrix in the ex-

tremum point are non-negative – at positive

mass squared of all physical Higgs bosons (cal-

culated below).

It can describe reality.

At this set of parameters the charged vacuum

solution describe either saddle point or local (not

global) minimum with larger vacuum energy (Diaz-

Cruz et al).
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The rephasing transformation shifts ξ → ξ − ρ.

Let us take some Lagrangian describing our model

and calculate v.e.v.’s. Than, the rephasing trans-

formation with ρ = ξ gives a real vacuum form

of Lagrangian -rvL with ξ = 0 (horizontal strip

in figure) with

λ1−4,rv = λ1−4, λ5,rv = λ5e−2iξ,

λ6,rv = λ6e−iξ, λ7,rv = λ7e−iξ,

κrv = κe−iξ, m2
12,rv = m2

12e−iξ,

At given vi we denote

λ345,rv = λ3,rv + λ4,rv + Reλ5,rv,

v1

v2
λ6,rv ±

v2

v1
λ7,rv =

{
λ67,rv for +,
2λ̃67,rv for −;

m2
12,rv = 2v1v2(ν + iδ).

Beginning from here we use the rvL, without

writing explicitly the subscript rv.
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V =
λ1

2

[
(φ†1φ1)−

v2
1

2

]2

+
λ2

2

[
(φ†2φ2)−

v2
2

2

]2

+λ3(φ
†
1φ1)(φ

†
2φ2) + λ4(φ

†
1φ2)(φ

†
2φ1)

+
1

2

[
λ5(φ

†
1φ2)

2 + h.c.
]

+
{[

λ6(φ
†
1φ1) + λ7(φ

†
2φ2)

]
(φ†1φ2) + h.c.

}

−1

2

(
λ345 + Reλ67

)
[v2

2(φ
†
1φ1) + v2

1(φ
†
2φ2)]

−v1v2 Re[λ6(φ
†
1φ1) + λ7(φ

†
2φ2)]

+ν(v2φ1 − v1φ2)
†(v2φ1 − v1φ2)

+2δ · v1v2Im(φ†1φ2).

Mass term here is written via v1, v2 and λ’s

plus

single free dimensionless parameter ν.

The imaginary part of m2
12 is constrained in rvL

by relation

Im(m2
12) ≡ 2v1v2δ = Im(λ5 + λ67)v1v2
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The standard decomposition of the fields φi in

terms of physical fields (in zero rephasing gauge):

φi =




ϕ+
i

1√
2
(vi + ηi + iχi)


 (i = 1,2).

Goldstone boson fields

G0 = cosβ χ1 + sinβ χ2,

G± = cosβ ϕ±1 + sinβ ϕ±2 .

*********************************

Charged Higgs boson fields

H± = sinβ ϕ±1 + cosβ ϕ±2 with

M2
H± = v2

[
ν − 1

2
Re(λ4 + λ5 + λ67)

]
.
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Neutral Higgs sector. By definition ηi are

standard C– and P– even (scalar) fields while

A = − sinβ χ1 + cosβ χ2 is C–odd (in the in-

teractions with fermions it behaves as P– odd

particle - a pseudoscalar). The mass-squared

matrix M in the η1, η2, A basis is

M =




M11 M12 M13
M12 M22 M23
M13 M23 M33


 , with

M11 =
[
c2β λ1 + s2β ν + s2βRe(λ67/2 + 2λ̃67)

]
v2,

M22 =
[
s2β λ2 + c2β ν + c2βRe(λ67/2− 2λ̃67)

]
v2,

M12 = −
(
ν − λ345 −

3

2
Reλ67

)
cβsβv2,

M13 = −
(
δ + Imλ̃67

)
sβv2,

M23 = −
(
δ − Imλ̃67

)
cβv2,

M33 =
[
ν −Re(λ5 −

1

2
λ67)

]
v2 ≡ M2

A,

cβ = cosβ, sβ = sinβ.

MA is CP–odd Higgs boson mass in the CP con-

serving case.
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The masses squared of the physical neutral states

hi – eigenvalues of the matrix M, the Higgs

eigenstates hi have no definite CP parity since

they are mixtures of fields ηi and A with oppo-

site CP parities (provided by M13 and M23):



h1
h2
h3


 = R




η1
η2
A


 with RMRT = diag(M2

1 , M2
2 , M2

3) .

The diagonalizing matrix

R = R3R2R1 ≡



R11 R12 R13
R21 R22 R23
R31 R32 R33




R1 =




c1 s1 0
−s1 c1 0
0 0 1


 , R2 =




c2 0 s2
0 1 0
−s2 0 c2


 ,

R3 =



1 0 0
0 c3 s3
0 −s3 c3


 .

(Ri are rotation matrices, αi are Euler angles,

ci = cosαi, si = sinαi).
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Two step diagonalization

1. Scalar (12) sector




h
−H
A


 = R1




η1
η2
A


 with

R1MRT
1 = M1 ≡




M2
h 0 M ′

13
0 M2

H M ′
23

M ′
13 M ′

23 M2
A


 ,

M ′
13 = c1M13 + s1M23, M ′

23 = −s1M13 + c1M23.

************************
If CP conserves (at M13 = M23 = 0), h1 = h,
h2 = −H, h3 = A. So, notations customary for
CP conserving case:

α = α1 − π/2 , α ∈ (−π/2, π/2) .

H = cosα η1 + sinα η2 , h = − sinα η1 + cosα η2 ,

M2
h,H = (M11 + M22 ∓N ) /2,

N =
√

(M11 −M22)
2 + 4M2

12 ,

sin 2α =
2M12

M2
H −M2

h

⇒ sin 2α

sin 2β
=

v2(λ345 − ν)

M2
H −M2

h

,

M ′
13 = −v2[δ cos(β + α)− Imλ̃67 cos(β − α)] ,

M ′
23 = v2[δ sin(β + α)− Imλ̃67 sin(β − α)] .
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2. Complete diagonalization
The above diagonalization keeps two off-diagonal

elements in mass matrix M1, which are com-

bined from δ(∝ Im (m2
12)) and Imλ̃67. If at

least one of these terms 6= 0, the additional di-

agonalization is necessary, and the mass eigen-

states, being admixtures of CP–even and CP–

odd states, violate CP symmetry.



h1
h2
h3


 = R3R2




h
−H
A


 with

RMRT = R3R2M1RT
2RT

3 =




M2
1

M2
2

M2
3




The angles α2 and α3 describe mixing of CP –

even states h, H with CP –odd state A.

⇒ The complexity of some parameters of the

potential in its real vacuum form is necessary

and sufficient condition for CP violation in the

Higgs sector.
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For an arbitrary form of Lagrangian (i.e. not
for the real vacuum form) the necessary condi-
tion for CP violation in the Higgs sector can be
written as complexity of at least one rephasing
invariant combination

λ∗5(m2
12)

2 , λ∗6m2
12 , λ∗7m2

12 .

Natural set of parameters

To have CP� in the Higgs sector ⇐ Im (m2
12rv) 6=

0 (simultaneously Im (λ5rv) 6= 0). This CP� is
presumably weak if

Im (m2
12rv) ¿ |M2

A −M2
h |, |M2

A −M2
H | .

This simple form of condition is valid only for
rvL. In other rephasing forms this condition in-
cludes both Im (m2

12) and Re (m2
12).

Naturally, this condition must be formulated in-
dependently on the rephasing gauge ⇒ for the
natural set of parameters of 2HDM we
require that |m2

12| ¿ |M2
A −M2

h |, |M2
A −M2

H |, i.e.
|ν|, |λ5| ¿ |λ1−4| (natural set of parameters).

Weak CP� in Higgs sector looks unnatural

if |m12| is large, i.e. a weak CP violation

naturally correspond to weakly broken Z2

symmetry with |ν| < |λi|.
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Special cases

• If δ = 0 and Imλ̃67 = 0, CP symmetry does not

violated, h, H and A are physical Higgs bosons

and α2 = α3 = 0.

**********************

• If |M ′
13/(M2

A −M2
h)| ¿ 1 ⇒

α2 ≈ 0 ⇒ h1 ≈ h ( practically CP –even),

h2, h3 generally have no definite CP parity

tan2α3 ≈
2M ′

23

M2
A −M2

H

.

**********************

• If |M ′
23/(M2

A −M2
H)| ¿ 1 ⇒

α3 ≈ 0 ⇒ h2 ≈ −H ( practically CP –even),

h1, h3 generally have no definite CP parity

tan2α2 ≈
2M ′

13

M2
A −M2

h

.

**********************

• Case of weak CP violation joins 2 above cases.

**********************

• Intensive coupling regime Mh ≈ MH ≈ MA.

⇒ CP violating mixing of fields is naturally strong,

spacing between Mi is increased due to this mix-

ing.
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Relative couplings of Higgs boson hi:

χi
a

def
= gi

a/gSM
a , a = q, `, V (= Z, W )

**********************

Couplings to gauge bosons

χ
(i)
V = cosβ Ri1 +sinβ Ri2, i = 1−3, V = W, Z

In particular, for the case with weak violation of

CP symmetry approximately

χ
(1)
V = sin(β − α), χ

(2)
V = − cos(β − α),

χ
(3)
V = −s2 sin(β − α) + s3 cos(β − α).
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Yukawa interaction

General Yukawa Lagrangian

−LY = Q̄L[(Γ1φ1 + Γ2φ2)dR

+(∆1φ̃1 + ∆2φ̃2)uR] + h.c.

+ lepton terms

Γ and ∆ — 3–dimensional in the family space

matrices with generally complex coefficients.

If they are non diagonal in family index, the

FCNC appears.
To have only soft violation of Z2 symme-

try (to keep separate fields φi at small dis-

tances), each right-handed fermion should

couple to only one field, either φ1 or φ2.

Otherwise, e.g. in Model III, hard violation of

Z2 symmetry appears via one–loop corrections.

The case Γ2 = ∆2 = 0 – Model I,

the case Γ2 = ∆1 = 0 – Model II.
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Model II

−LII
Y =

∑
k=1,2,3

gdkQ̄Lkφ1dRk +
∑

k=1,2,3
gukQ̄Lkφ̃2uRk

+
∑

k=1,2,3
g`k¯̀Lkφ1`Rk + h.c.

For the physical Higgs fields it result in (for two-

component spinors)

χ
(i)
u =

1

sinβ
[Ri2 − i cosβ Ri3],

χ
(i)
d =

1

cosβ
[Ri1 − i sinβ Ri3].

For the interaction of the charged Higgs bosons

with fermions, independent on details of the

Higgs potential, one has for 4-component spinors

LH−tb = Mt

v
√

2
cotβ b̄(1 + γ5)H−t

+
Mb

v
√

2
tanβ b̄(1− γ5)H−t + h.c.
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Useful relations
The unitarity of the mixing matrix R allows to

obtain a number of relations between the rela-

tive couplings of neutral Higgs particles to the

gauge bosons and fermions.

Reparam. invariant relations

• The pattern relation among the basic rela-

tive couplings of each neutral Higgs particle hi

(GKO):

(χ(i)
u + χ

(i)
d )χ(i)

V = 1 + χ
(i)
u χ

(i)
d , (pr)

• A vertical sum rule for each basic relative cou-

pling χj to all three neutral Higgs bosons hi (Gu-

nion et al):

3∑

i=1

(χ(i)
j )2 = 1 (j = V, d, u). (vsr)

• The relations for CP violated parts of Yukawa:

(1− |χ(i)
d |2) Imχ

(i)
u + (1− |χ(i)

u |2) Imχ
(i)
d = 0 .
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Reparam. non-invariant relations

are valid for the Model II form of Lagrangian.

• A horizontal sum rule for each neutral Higgs

boson hi (Gunion et al)

|χ(i)
u |2 sin2 β + |χ(i)

d |2 cos2 β = 1. (hsr)

• Linear relation

χ
(i)
V = cos2 β χ

(i)∗
d + sin2 β χ

(i)
u =

= cos2 β χ
(i)
d + sin2 β χ

(i)∗
u

• Besides,

tan2 β =
(χ(i)

V − χ
(i)
d )∗

χ
(i)
u − χ

(i)
V

=
Imχ

(i)
d

Imχ
(i)
u

=
1− |χ(i)

d |2

|χ(i)
u |2 − 1

.
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The consequences for some cases

with possible CP violation everywhere

(i) χ
(2)
V ≈ ±1 ⇒χ

(1)
V ≈ χ

(3)
V ≈ 0 independently on

the form of Yukawa sector ⇐ vsr.

(ii) χ
(2)
V ≈ ±1 ⇒(1∓ χ

(2)
d )(1∓ χ

(2)
d ) ≈ 0 ⇐ pr.

(iii) χ
(2)
V ≈ ±1 ⇒χ

(1)
u χ

(1)
d , χ

(3)
u χ

(3)
d ≈ −1⇐ pr, vsr.

(iv) The couplings to fermions are generally com-

plex χ
(2)
u,d ≈ ±1 ⇒χ

(1)
u,d ≈ ±(∓)iχ(3)

u,d ⇐ vsr.

(v) χ
(i)
u ≈ ±1 ⇒χ

(i)
d ≈ ±(∓)1 ⇐ hsr.

(vi) |χ(i)
u,d| À 1 ⇒χ

(i)
d,u ≈ 0 ⇐ hsr.

*****************************

In the CP conserving case

χ
(φ)
H± ≡ −vghH+H−

2M2
H±

=


1− M2

φ

2M2
H±


 χ

(φ)
V +

M2
φ − νv2

2M2
H±

(χ(φ)
u + χ

(φ)
d ).
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Constraints for parame-
ters of Higgs potential

were written only in the case of soft violation of

Z2 symmetry without CP violation. We extend

these results to the case with CP violation.

• Positivity (vacuum stability) constraints.

The potential must be positive at large quasi–

classical values of fields |φi| for an arbitrary di-

rection in the (φ1, φ2) plane:

λ1 > 0, λ2 > 0, λ3 +
√

λ1λ2 > 0,

λ3 + λ4 − |λ5|+
√

λ1λ2 > 0.

• Minimum constraints — conditions ensuring

that the condition for vacuum is a local mini-

mum for all directions in (φ1, φ2) space, except

the Goldstone modes (the physical fields provide

the basis in the coset).
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• Unitarity constraints. The quartic terms of

Higgs potential lead, in the tree approximation,

to a s–wave Higgs-Higgs and WLWL and WLH,

etc. scattering amplitudes for different elastic

channels. These amplitudes should not over-

come unitary limit for partial wave. The ear-

lier constraints for the case without CP violation

(Akeroyd et al.) – with real λ5 extends to the

case with CP violation by the change λ5 → |λ5|(IFG,

Ivanov).

These constraints give bounds for the Higgs-

boson masses which strongly depend on the quad-

ratic mass parameter ν.

Large ν ⇒ all MH, MA, MH± are large (decou-

pling limit).

Small ν ⇒ moderately large upper bound of

600÷ 700 GeV for MH, MA, MH±.
The correspondence between the tree-level uni-

tarity limit and realization of the Higgs field as

more or less narrow particle, as in minimal SM ,

takes place in the 2HDM only in the case when

all unitarity constraints are violated simultane-

ously. In the case when only some of these con-

straints are violated the physical picture become

more complex.
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Heavy Higgs bosons in 2HDM

Many analyses of 2HDM assume that the light-

est Higgs boson h1 is similar to the Higgs boson

of the SM , all other Higgs bosons are very

heavy (with mass ∼ M).

Usual additional hidden requirement (?!?):

Theory must have explicit decoupling property:

the mention features remain valid at M → ∞
(decoupling property).

In fact, the mentioned physical picture can be

realized in the 2HDM both with and without

decoupling property.

Two scenarios of generation of heavy
Higgs masses.
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Decoupling of heavy Higgs bosons

is realized at unnatural condition ν À ‖λi|,

⇒ M ′
13 ∼ λiv

2 ⇒ |M ′
13| ¿ M2

A − M2
h ≈ νv2 ⇒

h1 ≈ h, etc. as it was discussed earlier, β − α ≈
π/2,

M2
h = v2


c4βλ1 + s4βλ2 + 2s2βc2βλ345︸ ︷︷ ︸

soft

−2s2βc2βReλ67︸ ︷︷ ︸
hard


 ,

M2
H = v2





ν + s2βc2β(λ1 + λ2 − 2λ345)︸ ︷︷ ︸
soft

+

Re

[
2sβcβ(λ6 + λ7) +

(
−3

2
+ 4s2βc2β

)
λ67

]

︸ ︷︷ ︸
hard





,

α ≡ α1 − π
2 = β − π

2 + δα ,

δα = −sin 2β[λ345 cos 2β + c2βλ1 − s2βλ2 +O(Reλ6,7)]
ν .
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Decoupling. Lightest Higgs boson h1.

β − α ≈ π/2 ⇒ all couplings of h1 are close to

those in SM and also selfcouplings, h1h1h1 and

h1h1h1h1, are very close to the corresponding

SM couplings. Besides, h1 practically decouple

from H±, since the quantity χ
(1)
H± ∼ O(|λi|/ν).

Higgs bosons h2, h3 are almost degenerate in

masses, since

MA ≈ MH(≈ M2 ≈ M3) = v
√

ν (1 +O (|λ|/ν)) .

Besides, MH± ≈ M2 ≈ M3.

The CP violating mixing angle α3 can be large,

tan2α3 ≈
2M ′

23

M2
A −M2

H

, and

χ
(2)
u = iχ

(3)
u = − cotβ eiα3,

χ
(2)
d = iχ

(3)
d = tanβ e−iα3.

while couplings of h2, h3 to gauge bosons and

H± are small,

χ
(2)
V = cosα3δα , χ

(3)
V = sinα3δα ,

χ
(2,3)
H± ∼ O(|λi|/ν) .
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Heavy Higgs bosons without decoupling.
The option, when except one neutral h1 all other

Higgs bosons are heavy enough, can also be re-

alized in 2HDM without decoupling (at natural

set of parameters) .

Sets of parameters of potential, satisfying uni-

tarity constraints, for light h (mass 120 GeV)

and heavy H, H±, non-decoupling case.
tanβ λ1 λ2 λ3 λ4 λ5 ν

(1) 50 1 6 5.5 -6 -6 0.24
(2) 0.02 6 1 5.5 -6 -6 0.24
(3) 1 6.25 6.25 6.25 -6 -6 0
(4) 10 4 8 4.4 -9 -0.5 0.24

+0.3i

Mh MH MA MH± s2 s3
(1) 120 600 600 600 - -
(2) 120 600 600 600 - -
(3) 120 600 600 600 - -
(4) 120 700 206 556 0.09 0.02

Lines (1-3) – the case without CP violation,

line (4) – with CP violation.
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