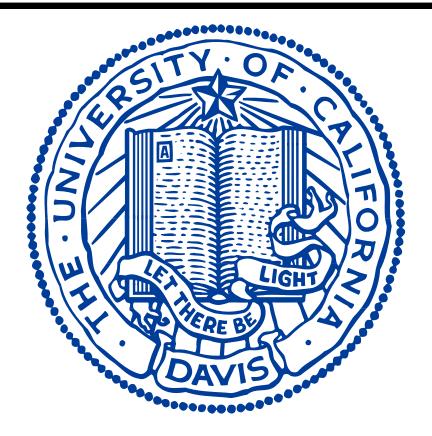
Motivations and strategies for detecting $h \rightarrow aa$ at hadron colliders



Bob McElrath University of California, Davis

CPNSH 3/25/2005

A μ -solvable model is any model which promotes the μ term to a field, such that the vacuum expectation value of a field dynamically generates $\mu = \lambda \langle S \rangle$.

$$W = \lambda S H_u H_d + \kappa S^3 \tag{1}$$

Such models may involve extra discrete or gauge symmetries to forbid the canonical μ term.

String-derived models never have a μ term since masses appearing in the superpotential must be $\mathcal{O}(M_s)$.

The κ term may be absent, in favor of Planck-suppressed Kahler operators, and a large discrete symmetry. (a.k.a. MNSSM)

We choose the NMSSM as a prototype of this class of models.

U(1) symmetries give a small M_A

$$W = \lambda S H_u H_d + \kappa S^3 \qquad V_{soft} = \lambda A_\lambda S H_u H_d + \kappa A_\kappa S^3 \qquad (2)$$

$$Q_{H_u} = 1$$
 $Q_{H_d} = 1$ $Q_S = -2$ (3)

This is a Peccei-Quinn symmetry. Superpotential λ term is symmetric, soft M_i are symmetric, Yukawa's are symmetric. Broken explicitly by κ and A_{κ} . Symmetry is approximate in $\kappa \ll 1, A_{\kappa} \ll M_{SUSY}$ limit. [Miller, Moretti, Nevzorov, hep-ph/0501139 (among others)]

$$Q_{H_u} = 1$$
 $Q_{H_d} = 1$ $Q_S = 1$ (4)

This is an R-symmetry (not respected by supersymmetry). Broken by soft SUSY breaking trilinear terms A_{λ} , A_{κ} . Symmetry is approximate in κA_{κ} , $\lambda A_{\lambda} \ll M_{SUSY}$ limit. [Matchev, Cheng, hep-ph/0008192]

In *both* cases, A_1 is the PNGB of the broken symmetry.

Both also also broken by radiative corrections.

The gaugino-mediated connection

In gaugino-mediated SUSY breaking, gauginos get soft masses M_{SUSY} first, and transmit SUSY breaking to the rest of the theory at 1-loop.

 H_u and H_d are charged under $SU(2)_L$ and $U(1)_Y$, therefore we expect $A_\lambda \simeq M_{SUSY}/4\pi$.

S is uncharged under SM gauge symmetries. Therefore we expect $A_\kappa \simeq M_{SUSY}/16\pi^2.$

Constraints on a light A

There are numerous constraints on a very light A (often called the Axion when $\kappa = 0$). Most are for *very* light A. For instance microwave cavity searches for the axion that solves the Strong CP problem.

Concentrate on the region $2M_{\tau} < M_A < M_{\Upsilon}$

 $\Upsilon \rightarrow \gamma + X$ spectrum shows no deviations. (CLEO)

 \rightarrow Experimental triggering reqires $E_{\gamma}>$ 500 MeV. (no constraint on $8.95GeV < M_A < 9.46GeV$)

 $\Upsilon \rightarrow \gamma + invisible$ shows no deviations. (CLEO)

 \rightarrow Measurement requires $E_{\gamma} > 1$ GeV.

ISR spectrum also makes this measurement insensitive for M_A near $M_\Upsilon.$

Constraints on a light A (ctd.)

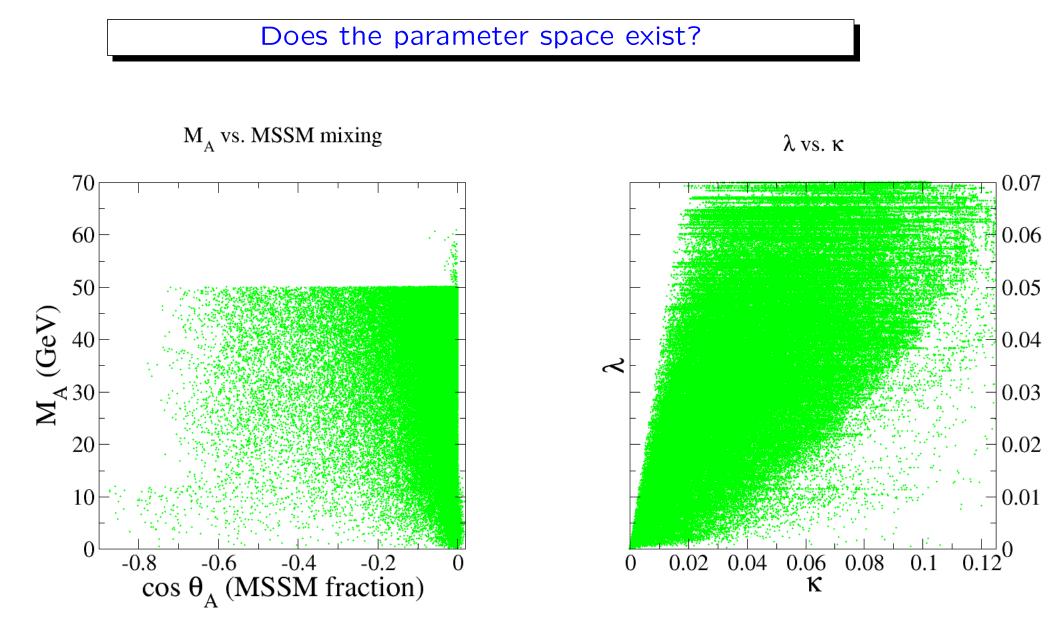
 $e^+e^- \rightarrow \gamma + invisible$ shows no deviations. (LEP)

 \rightarrow Aee coupling is extremely small.

 $K \rightarrow \pi A$ is a strong constraint for $M_A \lesssim 400 MeV$.

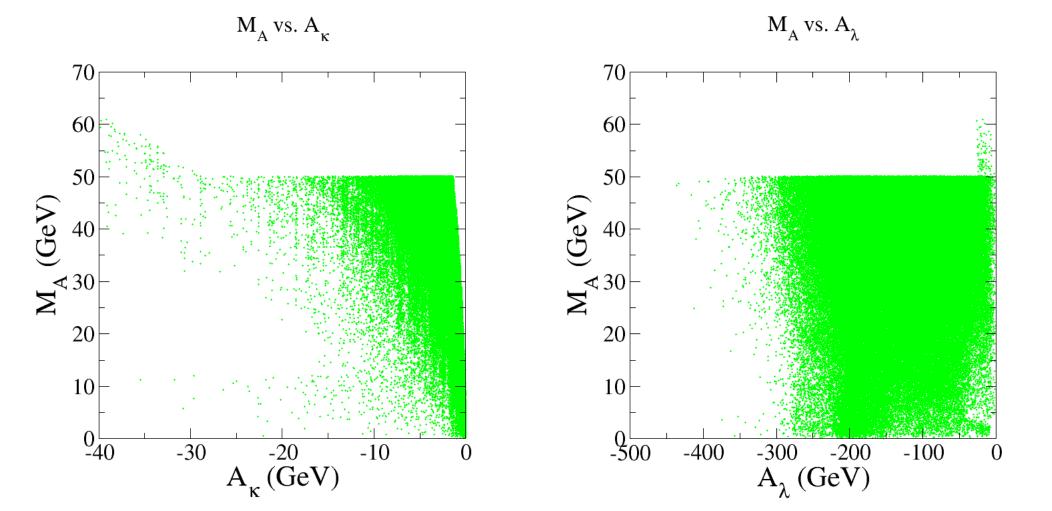
In all cases, couplings to the SM are suppressed by $\cos \theta_A$. $\cos \theta_A$ can be small at the same time that $h \to AA$ is large! Unless a neutralino is also light, $A \to SM$ is also dominant!

 $H \rightarrow AA \rightarrow invisible$ is no different phenomenologically than $H \rightarrow invisible$, and can be discovered in the W W fusion channel at the LHC.



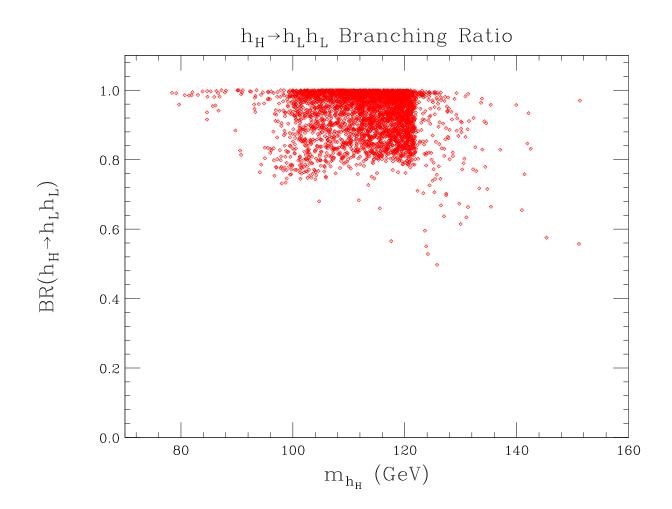
Using modified NMHDECAY [Ellwanger, Gunion, Hugonie, hep-ph/0406215] [Gunion, Hooper, McElrath; to appear]

Monte Carlo support for $U(1)_R$



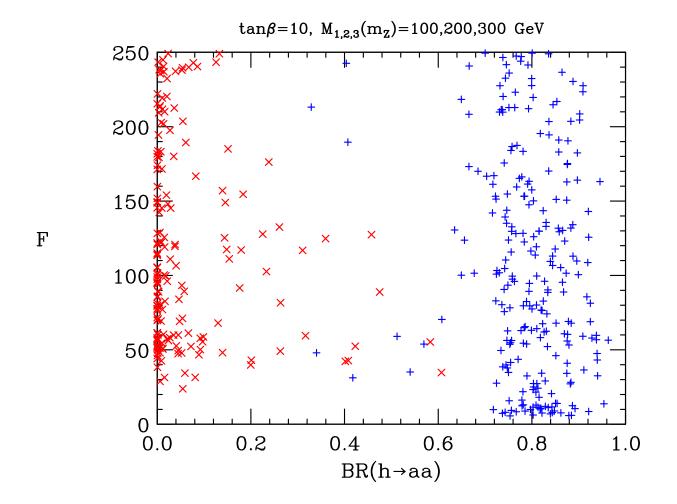
[Gunion, Hooper, McElrath; to appear]

$\mathsf{BR}(H \to AA)$



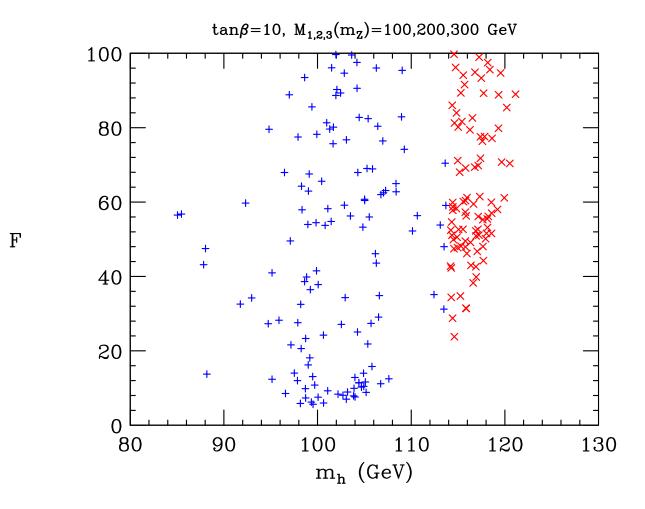
[Ellwanger, Gunion, Hugonie, hep-ph/0503203]

Fine-tuning



[Dermisek, Gunion, hep-ph/0502105]

Fine-tuning



[Dermisek, Gunion, hep-ph/0502105]

Electroweak Baryogenesis

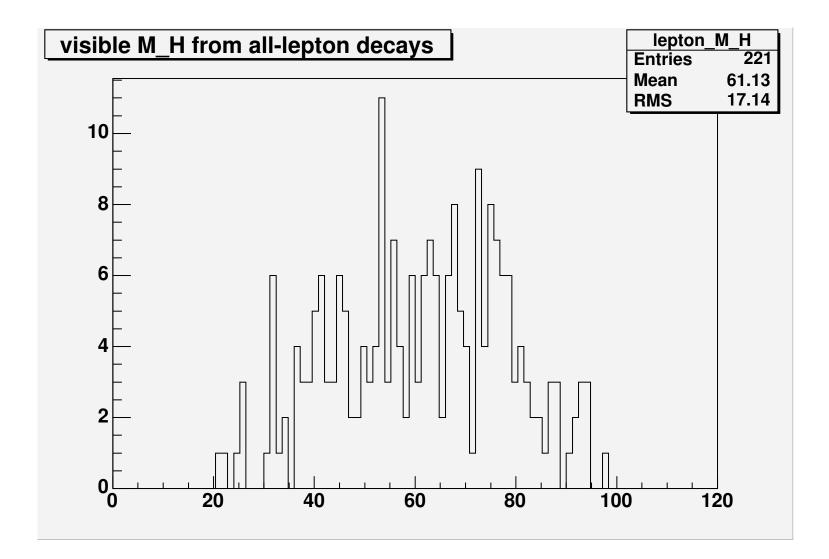
In MSSM:

- Two-loop stop effects required to enhance phase transition.
- Requires $105 < M_{\tilde{t}} < 165$ and $110 < M_h < 115$. [Quiros hep-ph/0101230]

NMSSM can easily get strong first-order phase transition without light stop, due to new trilinear soft SUSY terms.

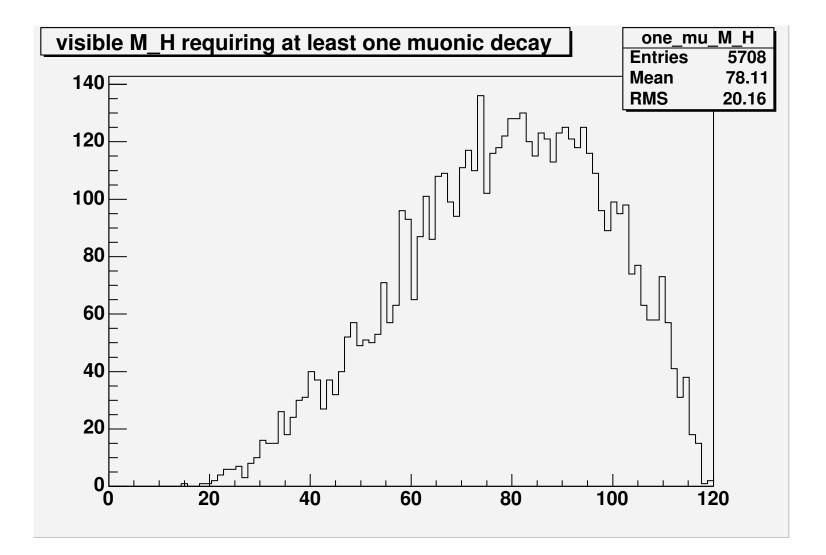
All-leptonic Tevatron search

All-lepton decays, BR=2.2%, $M_H = 120$, $M_A = 9$.



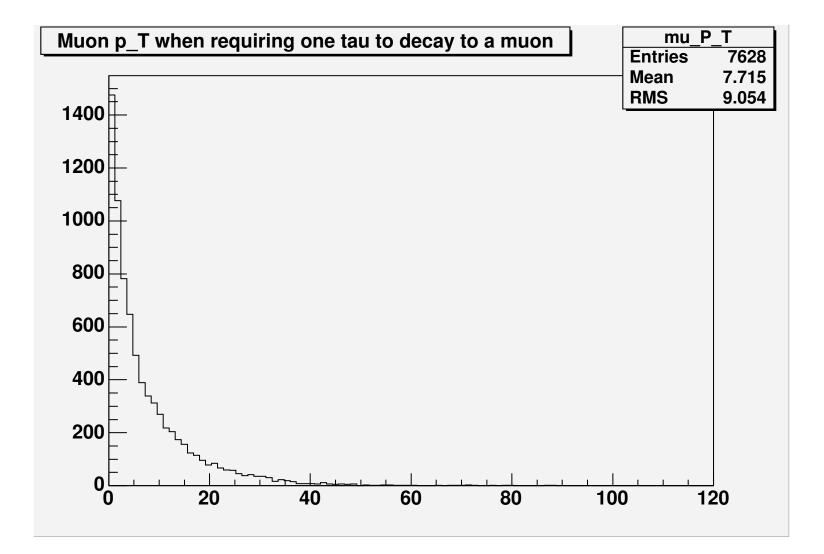
One-muon Tevatron search

One muon decay, BR=57%, $M_H = 120$, $M_A = 9$.



 μP_T in Tevatron search

Muon
$$P_T$$
, $M_H = 120$, $M_A = 9$.

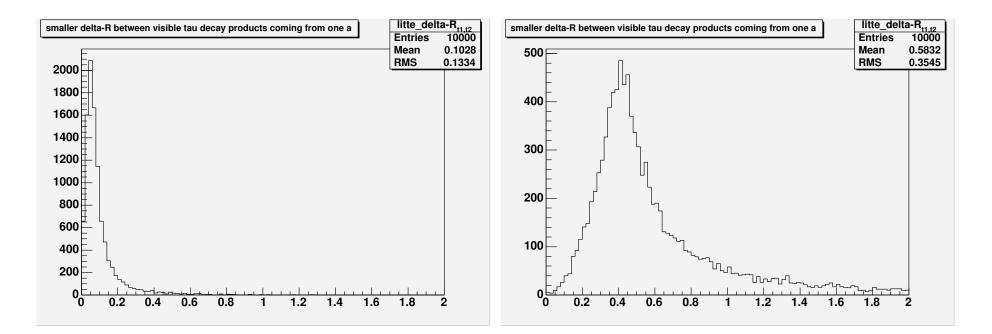


δR in Tevatron search

smaller $\delta - R$ between tau's from the same A.

 $M_H = 120, M_A = 9$

$$M_H = 85, \ M_A = 9$$



Based on properties of the *experimental* signatures (rather than parameter space), I suggest:

 $M_A = 4$: A this light must have significant singlet mixing, cannot be 2HDM or CPX. $M_A = 2M_{\tau} + \epsilon$ so that tau's merge, and are not isolated.

 $M_A = 9$: Escapes direct B-factory searches, $h \rightarrow \tau \tau$ still dominant.

 $M_H = 85$: Lightest M_H you can reasonably get in the NMSSM with reasonable coupling to the Z.

 $M_H = 120$: H can have SM coupling to Z, A evades LEP and B-factory detection, and need not be singlet. (e.g. covers CPX and any other model with a light A that is *not* singlet)

 $M_H = 150$: Largest M_H reasonable in a SUSY model,

Conclusions

 $M_{SUSY} \gg M_H \gg M_A$ is a technically natural hierarchy.

A light, singlet A is almost completely unconstrained.

A light, non-singlet A is constrained, but still allowed, especially if $M_A\gtrsim 8~{\rm GeV}.$

 $H \to AA$ can have smaller fine tuning and lower higgs mass than the MSSM.

It is important that $H \rightarrow 4\tau$ be carried out at the Tevatron, since LHC may have great difficulty triggering on this.

Clever jet/di-tau separation must be developed.

The Future: Leave No Stone Unturned

- Develop Monte-Carlos (PYTHIA CARDS file for each point?)
- Develop effective theories which encompass many models (may not be necessary since 2HDM + Z'/W' + SM may cover all bses)
- Choose benchmark points based on:
 - where significant experimental characteristics change
 - where background changes
 - leveraging advantages of different colliders ($\gamma\gamma$, ILC, $\mu\mu$)
 - ability to differentiate individual models
 - Secondary benchmark points (e.g. if found Z', go to "Measure Triple Gauge Coupling", sec. 4.3.7).

Bad Example: M_H max.