
Comments to ROOT/Seal/CORE

first hit on google
images for “CORE”

Reminder of the Charge

Fro
m Pere

’s t
alk

Adoption of Recommendations

• Say something about progress here, lot of work
done, others ‘in progress’

• commend SEAL/Root merger
• mathlib/dictionary

Fr
om

 Pe
re

’s
tal

k

Progress that has been made since
the last review

• “Success should be measured by how widespread the
usage is in other LCG components”
• At the time of the previous review, “only reported user it the

POOL project”

• Since then widespread adoption by the experiments
• Clear from the experiment feedback as reported yesterday

• Dictionary, Scripting, Foundation Libraries

• In some cases/components indirect through eg. POOL
• Plugin mgr

• Clearly major progress has been made!

Reminder of the Charge

Fr
om

 Pe
re

’s
tal

k

Project Organization

• ALL experiments welcome the proposed
ROOT/Seal merger
• There seems to be general agreement on the strategy

• Next step will be a detailed ‘tactical’ planning
• LHC experiments should set schedule and

priorities
• Dictionary, Mathlib, CLHEP replacement, Plugin Mgr…
• Focus of LCG manpower on the high(est) priority items
• keep it transparent for end user, simple for core

developers
• minimize new dependencies and req's on client objects

• Provide fallback solutions in case of delays
• Architects Forum to supervise the process

The Technical Choices (i)

• Commend the effort to merge and remove
duplications for SEAL/ROOT
• plugin management
• dictionary
• mathlibs

• Not enough to “add missing features to ROOT”
• Should preserve SEAL architectural strengths: component model,

limited requirements on client objs

• Lightweight Packaging is crucial
• Especially for math libs and plugin scheme
• Applications (e.g. trigger) should be able to pick core components

(e.g. mathlibs) without buying into the entire (SEAL/ROOT/CORE)
framework

• Minimize/Avoid new dependencies,
• Reduce where possible!

The Technical Choices (ii)

• We hope that the ROOT-CORE team will seize the opportunity to
remove the inheritance from TObject where appropriate to decouple
basic classes & components
• Possible thanks to all the work to support ‘foreign’ class I/O in ROOT4
• Esp. important in cases like (Lorentz)Vector, ValidityIntervals,

RandomNumberGen, MathLib, etc.
• Basically, the ‘stuff’ in SealBase, SealUtils, CLHEP and more…

Fr
om

 V
inc

en
zo

’s
tal

k

The Technical Choices (iii)

• plugin management:
• substantially different approach:

• Factory (SEAL) vs. Interpreter (ROOT)

• carefully evaluate the impact on existing experiment
schemes

• e.g. Gaudi component-model
• Esp. when visible to end-users

• Broad agreement on the need of a
Common Dictionary
• clean implementation
• unify dictionary clients

for experiments using
lcgdict/reflex

• unify automatic generation
of glue code (e.g. python bindings)

• Need to go from roadmap
to a route map
• Scheduling, Timescale
• Subject of May Workshop

• Mathlib integration work is the most
advanced
• Experiments are neutral about licensing, but concerned about duplication
• previous remarks about packaging, dependencies apply here!

The Technical Choices (iv)

From (one of) Rene’s talk(s)

Time Scales

• Support proposed schedule

From
 Rene’s & Pere’s

talk)

