

ATLAS

LCG Applications Area Feedback

David Quarrie

David Quarrie: ATLAS LCG Apps Area Feedback

Introduction

- SEAL
- POOL
- PI
- LCGCMT
- Simulation
- SPI
- Summary

SEAL: Dictionary

- Heavy use of C++ and Python Dictionary
 - Significant contribution to dictionary & Python bindings
- Initially LCGDict for POOL persistency & PyLCGDict for configuration
- More recently PyLCGDict2 for configuration & interactivity
- Haven't yet moved to Reflex or PyReflex
- Good experience with dictionary and code generation tools
 - Now robust and complete
- Don't yet generate all member functions by default
 - Need more studies of space and performance (build time)
- Note that PyROOT developed by Wim now shipped as part of ROOT

SEAL: Plugins

- Migration to use SEAL plugin management underway but slow
 - Used by LCG components themselves (POOL) and within ATLAS Geant4
 - Partially because we have a functional alternative (Gaudi component manager)
 - Partially because a change would not necessarily be backwards compatible
 - Large number of configuration files to change
 - Migration coupled to LCHb plans
- Some problems with cache management & search path
 - E.g. discovered problem between AFS & kit-built installations because of dependency handling differences
 - Building cache files still not fully automated

SEAL: Misc.

- ATLAS doesn't use provided CLHEP dictionary
 - Because we're still using CLHEP 1.8
 - Generates its own (and uses it heavily)
- Concerns about granularity and release couplings
- Some use of Math Library components
 - Particularly Minuit
- We've put on hold a migration to CLHEP 1.9 and 2.0 until the plans for new physics vector and linear algebra libraries are better understood
 - Since migrating to CLHEP 1.9 means we cannot easily evolve existing reconstruction data (easier to recreate) we don't want to move twice
 - Survive for a few months with CLHEP 1.8 (already build our own Geant4 installations)

POOL: Persistency

- Fully committed to POOL
 - Both ROOT and Relational persistency
 - >100TB in ROOT3 format files
 - About to start significant creation of ROOT4 format files
- Limited significant schema evolution experience yet
 - But it will become increasingly important
- Expect to need to write "custom converters" as part of overall strategy
 - Automatic evolution; custom converters; regenerate data
 - Clearly need read capability from raw data for essentially lifetime of experiment
- Generally POOL is robust and complete
 - Small problems still being found & fixed
- Some concerns about rate of new & bug-fix releases

POOL: COOL

- Slower start to COOL than we would have liked
- ATLAS is fully committed to this, and is contributing most of the resources
 - Concern as to viability as common project because of lack of involvement from other experiments
- Lots of work being done in the context of both the online and offline on the COOL pre-releases
- We need a timely first COOL release (due end of March) in order to be ready for early ATLAS detector commissioning

POOL: Scalability

- Scalability is major area still to be addressed
- COOL
 - Interest in FroNtier approach
 - Will this be a common project activity or should ATLAS plan on going it alone?
- General
 - ATLAS fully committed to 3D project as a common effort to achieve scalable distributed infrastructure

PI

- Rather limited use within ATLAS
- Histograms
 - Gaudi/AIDA API inadequate for physics use
 - Profile histograms added recently
 - Histogram manipulation still inadequate
 - TDAQ interested in continued use of HTL behind abstract API
- Still use Gaudi Ntuples by default, but plan on migrating
- Generally not sure what the plans are with respect to App. Area support of AIDA APIs
 - This needs to be clarified soon

LCGCMT

- ATLAS uses LCGCMT for all builds
 - But still needs their own overrides/variants
 - Partially because of use of clhep 1.8
- Distribution kit based on features of LCGCMT
 - We generate our own tarballs of external software

Simulation

- Genser
 - ATLAS uses Genser generators where possible
 - > Which ones would be like them to add?
 - About to migrate to Genser 1.0
 - > But using same generator versions as currently in use
- Geant4
 - Extensive use in production
 - Geant3 being removed from ATLAS code base
 - Robust and good performance (cpu & memory)
- Validation
 - Feedback, particularly in context of the ATLAS combined testbeam has been crucial

SPI

- Savannah
 - Used by both offline & online/TDAQ
 - Primarily as bug-tracking portal
 - Use dominated by developer responsiveness & management
- Testing tools
- External package installations
 - Most external packages now come from LCG hosted installations
- Config/make support
 - Requests from users for config/make support for AA software
 - Is it still in the plan? Timescale?

Apps Area Reorganization

- ATLAS believes that the new LCG Apps Area organization is capable of functioning well
 - But relies on good integration of teams with different philosophies
 - It requires buy-in from all and design changes from both sides
 - Crucial that needs of experiments continue to be met
 - Remember that we have large user communities
 - We also have production & trigger environments as well as physics analysis users
 - Crucial to clarify plans quickly so that we can understand the implications
 - > E.g. CLHEP and maths libraries
 - Long term evolution support
 - This is essentially the last chance before LHC startup

Summary

- ATLAS relies heavily on LCG Apps Area tools
 - And has made significant contributions
- Migration to all SEAL tools incomplete
- Release cascade is worrying
- Some concerns about Apps Area reorganization, but believe it can work
- Need to understand the implications better for our own software base