New Requests & Requirements Geant4 Technical Forum Mar 2005

Editor J. Apostolakis

1. Polarised Rayleigh scattering

Originator: PoGO (Tsunefumi Mizuno)

- The astronomical hard X-ray polarimeter called PoGO, aims to measure the polarization from astrophysical object in 30-100 keV range by measuring the asymmetry in azimuthal scattering angle.
- We discovered that the Rayleigh scattering process in Geant4 does not deal with the photon polarization, and consequently gave an artificially small modulation. Since the Rayleigh scattering cross-section is not negligible in the energy of our interest, this needs to be solved to simulate accurately.
- Request to implement the polarization process in Rayleigh Scattering
 - Offer to provide code we created as sample if needed.
- Since the energy bands of astrophysical Compton polarimeters are similar with each other, the implementation of polarized Rayleigh scattering is expected to be valuable to the community.

2. Selective verbosity

Originator: LHCb (G. Corti)

- We would like more configurable debugging features.
 - It is possible to follow in details various aspects of the simulation by setting verbose levels.
 - This is very hard to use when tracking complete pp events because millions of G4Track are produced.
- It would be very useful to be able to selectively turn on such verbose for a single G4Track, a single region of the detector, a combination of the two.

3. Treat particles with dipole moments

Originator: AD (Bertalan Juhasz)

- The user should be able to calculate the force acting on the magnetic (and possibly electric) dipole moment of a (neutral or charged) particle in an inhomogeneous magnetic (electric) field [F = mu * grad B]
 - for this, the magnetic dipole moment of a particle should be available for the equation of motion;
- Note that the magnetic moment is not necessarily a vector of constant magnitude, as its magnitude and direction might depend on e.g. the magnitude and direction of the external magnetic field
- Potentially no new standard G4 equation of motion class is needed; the force should be calculated by a user-derived equation of motion class

4. Neutron data for additional elements

Originators: (BaBar, Vanderbilt)

- BaBar needs the elements Nd (Neodymium) and Sm (Samarium) added to the high precision neutron models.
- In addition Vanderbilt are asking that As, In, Ge, Ga, Sb, Hg, Cd, Te, and Gd also be added.

Seconded by ESA.

New proposed 'platforms': gcc 3.4.3

Originator: ATLAS (D. Quarrie, A. Nairz)

- ATLAS, and the other LCH experiments, intend for the next two supported platforms to be:
 - gcc 3.4.3 with SLC3 in 32-bit mode (IA32)
 - gcc 3.4.3 with SLC3 in 64-bit mode (AMD64)
- Current understanding (which should be checked) is that these will be binary compatible with both Intel & AMD 32-platforms and EM64T Intel 64-bit platforms (not IA64 - Itanium).
- The [requested] timescale is that porting of external software to IA32 is about to start [now] and we hope to have a prototype ATLAS port available in Sept, but not yet in production.
- Also interested to maintain compatibility with CLHEP 1.8 for approximately the next 3 months.

Other

A) Example for new particles

Originator: Atlas/CMS

Example for creating new type of particles: creating a new particle and a modified primary transformer that creates tracks

Use case: creating new heavy sleptons particles, to investigate potential new physics in LHC experiment detectors.

B) Python UI

Originator: ATLAS (A. Dell'Acqua, A. Nairz)

- More support for a python UI in
- G4 (not only the current UI/macro version).

C) User Limits per region

Originator: EXO experiment (SLAC)

- Enable choice of User Limits per region
- "Given Geant4 allows defining cuts per region, why it does not allow defining G4UserLimits to a region?"

Notes: A first examination showed that this will not conflict with existing use cases for User Limits.

Geant 4 Technical Forum