Type inversion of Epi-Si and Cz irradiated devices

50 um thick epi-Si sensors, 50 Qcm

CERN scenario experiment
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Points correspond to MAXIMUM of V,,and not to
the minimum like in DOFZ devices

Both CERN scenario and fixed fluence experiments point to NO type inversion © for both neutron
and proton irradiated epi-Si samples! But ..., this can not be confirmed by TCT — too short pulses!

Does this remain true also for thicker/thinner devices? (non-homogenous distribution of oxygen)

Note that for proton irradiated devices the increase of |Neff| with fluence is larger than for DOFZ —
as will be shown long term annealing is very beneficial!
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Similar annealing behavior is obtained for standard DOFZ detectors irradiated

Annealing of epi-Si devices

Devices are not inverted — reduction of V., at late stage annealing
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below inversion point!
V4 after ~1 year at 20°C is much lower than initial V;, (~125V) for all fluences
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The long term annealing at RT reduces the V,, of the detector!
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Stable damage of Epi-Si sensors
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Good agreement for samples of different thicknesses
Larger donor removal for neutron irradiated samples
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Generation of positive space charge: N.=g. D
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The positive stable damage can be compensated by annealing (STA and LTA)!
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Short term and long term annealing
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Lonq term (reverse) annealing has
two components:
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The lifetime of epi-Si detectors at At high fluences detectors can
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Type inversion of irradiated Cz devices

300 CERN scenario experiment - 190 MeV pions from F. Honniger's thesis, Hamburg
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*According to evolution of V4 there is no change in SC sign in CERN scenario experiment ©

Complicated (no simple model) annealing varying for different samples from the same wafer!
Inversion during annealing investigated with TCT — there is a region for which it is difficult to determine the sign of SC.

How do we define the sign of the space charge for non-homogenous N?
(examples will be shown for proton irradiated Ocmetic (magnetic) Cz from Helsinki — 1.1 kQcm , 300 um thick)



In case of low fluence the assumption of constant N_is valid!
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If the diode is inverted

the picture is reversed!



Charge [arb.]

Cz — Irradlated to 5el4
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«Charge plots for electron and hole signals show that A, is not constant!
eLarge hole signal (charge) already at low voltages — injection in electric field region



ELECTRONS HOLES

TCT Measurement @ T=09 C | TCT Measurement @ T=-10 C |
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Both electron and hole seems to be injected in high field region, but...
what we measure/see is damped by trapping of the drifting charge
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To derive the electric field profile/space charge sign you must take trapping into
account!



HOLE SIGNALS

| TCT Measurement @ T=-10C | | Corrected induced current pulse shapes |
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After full depletion the slope of /() does not change sign
N, 1s of the same sign — not inverted !

larger U —> larger slope -> change in Neff

rough explanation:
trapping of the free carriers (leakage current) is responsible for change in N,

[, = NV,
| __, np depend on U,
I, =e,-p-v, hence occupation probability and A, as well
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ELECTRON SIGNALS — Cz detector

| TCT Measurement @ T=09C | Corrected induced current pulse shapes |
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Same conclusions can be drawn as from the hole signal!

How do we define sign of the space charge for non-homogeneous Neff?
The larger of two regions with opposite space charge determines

what we call “ the sign of the space charge”



Comparison of corrected hole signals for Fz an Cz detector irradiated in parallel to 5el14p
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