Electronics Issues

for sLHC Tracking Detectors

- Noise, Threshold
- Signal
- Signal/Threshold
- Electronics Tidbits

Hartmut F.-W. Sadrozinski

SCIPP, UC Santa Cruz

Hartmut Sadrozinski, SCIPP

Quiz Question # 1: who wrote the following sentence

E debbasi considerare, come non e cosa piu difficile a trattare, ne piu dubia a riuscire, ne piu periculosa a maneggiare, che farsi capo a introdurre nuovi ordini.

It must be considered that there is nothing more difficult to carry out, nor more doubtful of success, nor more dangerous to handle, than to initiate a new order of things.

Answer:

Niccolo Machiavelli: IL PRINCIPE

Noise, Threshold setting

Signal-to-noise ratio S/N is essential for performance of the tracking system.

RMS noise σ [electrons] depends on shaping time and size (i.g. C, i) of the detector channel

Threshold Thr

need to suppress false hits Thr = $n^* \sigma$ + threshold dispersion δ Thr

SCT: $\sigma \approx 600 + C^* 40 \approx 1500e^-$, $n = 4 \longrightarrow$ Thr $\approx 6,000e^-$ Pixels: $\sigma = 260e^-$, δ Thr = 40 e^- $n = 5 \longrightarrow$ Thr $\approx 1,300e^-$

BUT Pixel Threshold $\approx 2500 - 3000 e^{-}$ --> Mixed signal system issue, S/N!

Single-bucket timing is needed, use short shaping times (τ_R = 15ns for sLHC?). yet there is still a problem with time walk: signal is in time only if it exceeds the threshold by large amount ("overdrive")

Or: measure pulse height (ToT) and correct timing for pulse height.

Hartmut Sadrozinski, SCIPP

Signal / Threshold S/T : Expected Performance

(T. Rohe, RESMDD04) After radiation damage from a fluence of $6*10^{14} n_{eq}/cm^{-2}$, inefficiency vs. the signal-tothreshold ratio S/T:

S/T	Inefficiency [%]	
6	1	
4	2	
3	3	
2	9	

sATLAS Tracker Regions: Predicted Threshold

Hartmut Sadrozinski, SCIPP

Detailed sCMS Pixels (R. Horisberger)

Summary

- Propose 3 Pixel Systems that are adapted to fluence/rate and cost levels
- Pixel #1 max. fluence system ~400 SFr/cm² 100 μ * 150 μ
- Pixel #2 large pixel system 160 μ * 650μ
 -100 SFr/cm²
- Pixel #3 large area system Macro-pixel ~40 SFr/cm² 200 μ * 5000 μ
- 8 Layer pixel system can eventually deal with 1200 tracks per unit pseudo – rapidity
- Use cost control and cheap design considerations from very beginning.
- Can this be done for 2012/13 ????

CMS: Inside out:	"Fat" pixels, strips				
ATLAS Outside in:	"Skinny" strips, pixels				

Detector Materials for Pixels for $R \approx 5 \text{ cm}$

Results from **RD39**, **RD42**, **RD50**, ...

		Collected Signal [e ⁻]		
Mate	rial	Pre-Rad	10 ¹⁶ cm ⁻²	Issues
Si	~ RT	24,000	~ 2,500	Depletion, Trapping, n-on-p?
Si -75µm	Epi	6,000	~ 2,000	Small signal at intermediate fluences
Si	Cryo	24,000	?	Cryo Engineering
Si	3-D	24,000	~ 10,000	Efficiency "Holes"?
SiC	Epi	2,000	~ 0	Trapping? Slow collection
				Cost of wafers
Diamond	Poly	8,000	< 3,000 ?	Trapping ? Cost of wafers
Diamond	Single	12,000	"Same as	Trapping ? Cost of wafers
	X-tal		Poly ?"	

7

Charged Trapping in Si: the Good News

Efficiency of Charge Collection in 280 um thick p-type SSD G. Casse et al., (RD50): After 7.5 $*10^{15}$ p/cm², charge collected is > 6,500 e⁻

Charge collection in Planar Silicon Detectors might be sufficient for all but inner-most Pixel layer? For 3-D after 1 *10¹⁶ n/cm², predicted charge collected is 11,000 e⁻

8

Signal / Threshold S/T : Expected Performance

Efficiency in CMS Pixels (T. Rohe, RESMDD04)						S/T	Inefficiency [%]	
	Need S/T > $4 - 5$						6	1
					4	2		
						3	3	
							2	9
				Sig				
Ra	dius	Detector	Threshold		After	After 2500 fb ⁻¹		Comment
[c	em]		[e-]	Pre-Rad	1250 fb ⁻¹			
>	55	Long strips	6250	3.7	3.7	3	.7	~ SCT n-on-p
20	- 55	Short strips	4400	5.3	3.9	3	.2	n-on-p
8	cm	Thick Pixel	2000	11.5	5.5	3	.0	n-on-p
5	cm	Thin Pixel	2000	3.0	1.5	1	.0	Epi 75 µm
5	cm	3-D	2000	11.5	7.5	5	.0	100 µm cells

Hartmut Sadrozinski, SCIPP

Signal / Threshold : Expected Performance

Conclusions from the 1rst SLHC Workshop

CMS Electronics is very Robust, Handles increased rates well
Pixel and Tracker Upgrades – (RH and GH)

• 8 cms – 15 cms	Pixels 1	100 μ * 150 μ (Present System at 8, 11, 14 cms)			
•15 cms – 25 cms	Pixels 2	$160 \ \mu * 650 \mu$ (C4 Bonding, at 18, 22 cms)			
•25 cms – 50 cms	Pixels 3	200 μ * 5000 μ (at 30. 40, 50 cms)			
•50 cms -	Sili	con Strips (Rationalize Module Types)			
•R&D E1: Review Electronics Systems for Level 1 trigger					
•How will Tracker interface to: Calorimeters and µ Systems ?					

2nd CMS Workshop on Upgrades for SLHC (P.Sharp)

Conclusions from the 1rst SLHC Workshop

- The Tracker upgrade will require access to DSM Electronics
- Will need to Characterize the 130 nm Processes
- Will need to Characterize < 130 nm Processes (Propose 65 nm)
- R&D E2: Continue to Develop Relationship with DSM Vendors and obtain access to Design Tools to continue to optimize the use of DSM processes in Particle Physics
 Cost : Must get design right in < 2 Iterations Must use > 100,000 chips / Design

Then Cost / Chip is no worse than 250 nm

F.E.E. Technologies for sLHC:

Sub-µ CMOS	"accidentally" rad-hard, low power, used for pixels,CMS, also in sCMS
Bipolar BiCMOS	power-noise advantages for large capacitances and fast shaping, also excellent matching technologies used in ATLAS SCT are not sufficiently rad- hard beyond the LHC because of current gain β degrading from about 100 to about 40 at 10 ¹⁴ cm ⁻² , limited availability
SiGe BiCMOS	very fast ($f_T > 50$ GHz and $\beta > 300$), used in cell phones, backend: DSM CMOS "du jour", available IBM–MOSIS rad hardness has been measured to 10^{14} cm ⁻² we have now measured test structures in the CERN beam! Survive 10^{16} cm ⁻² , β useful above 10^{15} cm ⁻²
SiGefor sLHC?	Expect that largest area of sLHC tracker will be made of strips, so SiGe could give an advantage, specially for short shaping times (noise, overdrive).
	(Power (SiGe) < Power (0.25 µm CMOS) for "long" strips).

Single-Bucket Timing

Pulse rise time depends on both charge collection and shaping time If rise time falls within the clock cycle, single-bunch timing is possible

With 20ns shaping and 100V bias, do single-bunch timing at LHC (25ns)With 10ns shaping and 300V bias, the entire rise of the pulse is within 12 ns:80MHz single-bunch timing is possible for sLHC, reducing occupancy by 1/2