Detectors and electronics for Super-LHC: IRRADIATION RESULTS

Andrea Candelori INFN Sezione di Padova

OUTLINE

The presented results are from experiments performed by: -SMART Collaboration (Bari, Firenze, Pisa, Padova, Perugia, Trieste, Trento) -Department of Information Engineering (DEI), University of Padova

Measurements are in progress ...

1) Nuclear reactor irradiation in Lubiana:-MCZ n-type detectors(SMART)-Epitaxial n-type detectors(SMART)

2) 24 GeV proton irradiation at CERN:

- -Epitaxial n-type detectors (SMART)
- -FZ thinned n-type detectors (SMART)

- 0.13 µm CMOS technology

(SMART) (SMART) (DEI) -MCZ detectors Substrate: MCZ, n-type, 300 μ m thick, ρ = 0.6 k Ω ×cm, from Okmetic Detector processing: IRST

-Epitaxial detectors Epitaxial layer: n-type, 50 μ m thick, ρ = 50 Ω ·cm, grown by ITME on CZ substrate Detector processing: IRST

-FZ thinned detectors

Substrate: FZ, n-type, 300 µm thick, ρ= 6 kΩ·cm
Thinning: down to 50-100 µm by Tetra Methyl Ammonium Hydroxide (TMAH) etching from backside: IRST
Detector processing: IRST

MCZ n-type 300 μm thick detectors: neutron irradiation

Epitaxial n-type 50 μ m thick detectors: neutron irradiation

Epitaxial n-type 50 µm thick detectors: neutron irradiation

- V_{dep} decreases for annealing times at 80 °C higher than 8 minutes.
 If this effect is due to deep acceptor generation, devices are not type inverted.

Epitaxial n-type 50 μ m thick detectors: neutron irradiation

Epitaxial n-type 50 μ m thick detectors: neutron irradiation

• J_D decreases with annealing time at 80 °C.

Epitaxial n-type 50 µm thick detectors: proton irradiation

- The minimum of V_{dep} for protons (90-100 V) is higher than for neutrons (40-50 V).
- V_{dep}> V_{dep,0} at 10¹⁶ p/cm².
 The radiation effects induced by neutrons and protons are different.

Epitaxial n-type 50 μ m thick detectors: proton irradiation

- V_{den} decreases for annealing times at 80 °C higher than 8 minutes.
- If this effect is due to deep acceptor generation, devices are before SCSI after irradiation: for devices irradiated at low fluences V_{dep} ↑, ↓: no SCSI during long-term annealing; for devices irradiated at high fluences V_{dep} ↑, ↓, ↑: SCSI during long-term annealing.

FZ thinned n-type detectors: proton irradiation

FZ thinned n-type detectors: proton irradiation

• J_D linearly increases with fluence, independently on the thickness. (some data dispersion is present)

DETECTORS: future activity

	CZ n-type	MCZ n-type	Epitaxial n-type	Thinned FZ n-type	
Fluence (24 GeV protons/cm^2)	300 um	300 um	50 um	50 um	100 um
5.10E+14	1	1			
1.31E+15				1	
1.54E+15	1	1	1		
2.17E+15	1	1	1	1	1
3.99E+15	1	1	1	1	1
6.06E+15	1	1	1	1	1
8.34E+15			1	1	1
1.01E+16			1	2	
Total	5	5	7		7 4

CERN, 24 GeV protons, May 2004 (n-type materials)

Lubiana, nuclear reactor neutrons, December 2004 (n- and p-type materials)

	CZ n-type	MCZ n-type	Epitaxial n-type	FZ p-type	MCZ p-type
Fluence (1 MeV equivalent neutrons/cm ²)	300 um	300 um	50 um	200 um	300 um
1.00E+14	2	1		0	0
1.50E+14	2	1		1	1
2.00E+14	2	2		2	2
2.50E+14	2	1	1	1	1
5.00E+14	2	1	1	2	2
1.00E+15	2	1	2	1	1
2.00E+15			2	2	2
3.00E+15			3	0	0
4.00E+15			2		
6.00E+15			2		
8.00E+15			2		
Total	12	7	9	9	9

ELECTRONICS

- -Electronics for LHC (10 Mrad(Si) and 10¹⁵ fast hadrons/cm²):
 - 0.25 µm CMOS technology from IBM;
 - **5.5 nm** oxide thickness;
 - radiation hardened by design: **enclosed geometry** transistors.

The 0.25 μm CMOS technology will not be any more available for Super-LHC

- -Electronics for Super-LHC (100 Mrad(Si) and 10¹⁶ fast hadrons/cm²): following the scaling down of the commercial CMOS technologies?
 - 0.13 µm minimum channel length;
 - 2.5 nm oxide thickness;
 - no radiation hardened by process;
 - no radiation hardened by design (i.e., no enclosed geometry).

0.13 µm CMOS technology: proton irradiation

