
A Proposal for a Metadata Interface
The ARDA Project

DRAFT (Jan 19th 2005)
Editors: B. Koblitz, N. Santos

Introduction
In the following we present a proposal for an interface design to access metadata
catalogues on a grid-enabled infrastructure which is based on web-services. The
interface was designed to be easy to use, portable over different SOAP toolkits,
while allowing for performance through bulk operations. To prove the validity of
the design, a prototype implementation was written and evaluated.

Design Goals
The proposed metadata interface was designed as a general way to access data-
bases and catalogues in a grid environment, whether these databases already ex-
isted outside of the grid scope or whether their schemas were conceived taking
grid related issues like fine grained permissions into account. Implementations of
the interface can either act as services with SQL or XML databases serving as
back ends, or file-based caches or database proxies. The interface was inspired
by the POSIX interface to extended file attributes but adapted to work over a net-
work connection. The goal is to allow a fast but still simple access for the user cli-
ents or other grid services without requiring complex implementations.

The requirements for the design were to allow the user not only to read and write
metadata from and into the storage back end, but also to discover the underlying
schema of the metadata and even change it, in case the back end and the access
policy allow this. The user can thus be provided with a means to set up his own
metadata  storage  on  the grid,  including the possibility  for  schema evolution,
without the need for an administrator to do this work manually on the storage
back end. This is in contrast to the current gLite design, which only foresees fixed
database schemata and expects applications to know this schema a priori [1]. We
consider the proposed design closer to the application requirements. However,
the discussions with the gLite team is ongoing.

The requirements for the interface were also taken and extrapolated from exist-
ing implementations of metadata services implemented by the HEP experiments
at the LHC, which were studied extensively by the ARDA group [2, 3, 4]. Several
design issues related to the actual implementation were also taken from these
studies. The capabilities of the interface are also a superset of the requirements
of the metadata working group [5].

Wherever  prudent,  bulk  operations  have been made possible  in  the interface
design. Bulk operations are important for performance, since they can reduce re-
mote calls over the network which are very time consuming. On the other hand,
bulk operations are difficult to implement both on the server as well as on the cli-
ent. On the server bulk operations need to be implemented as a single transac-
tion: either it is fully executed or not. On the client preparing a bulk request can
be complicated since the user needs to set up more complex data structures. Fi-
nally, error handling by the user can be very demanding. Therefore, for every in-
terface call all these issues where weighed against each other to balance per-
formance against ease of implementation and usability. It was for example found
that a good alternative to lists of entries was the use of pattern matching which is
much simpler to use as well as for the implementation to provide. Patterns were

1



therefore used wherever possible.

The current design should be understood as a starting point, where extensions
are possible and feedback is necessary to improve its usability.

Terminology
Metadata: Metadata are key value pairs which can be assigned to entries in a
catalogue. Metadata may be stored in different back ends from SQL databases
over XML databases to files.

Entry: Entries are the entities to which metadata can be attached. They can be
added or removed from a database. Entries take the form of collection names
separated by slashes followed by an entry name, similar to a path in a file-system.
This allows hierarchies of entries. It is also possible to use the wild-cards “*” and
“?” in entries, however not in the collection part. 

Collection: A collection is a set of entries. Collections are also entries, that is, a
collection can again contain a collection. Collections are a means to structure
metadata hierarchically and restrict searches to subsets of the data. An imple-
mentation may choose not to have collections at all and thus work with per entry
schemas (e.g. an extended attribute enabled file system).

Schema: A schema is the set of metadata attributes and their storage types of an
entry. Implementations may limit schemas to collections, that means that all
entries in a collection share the same schema.

Attribute: The name or key of a part of the metadata. Attributes must be alpha-
numerical ASCII strings starting with a letter. They are case-sensitive.

Value: An application can assigned a values to the attributes of an entry which
are transferred to the back end as a transfer value and stored there according to
their storage type. Applications can discover these storage types and need to in-
terpret a transferred value accordingly.

Transfer value: Values are transferred as strings of printable ASCII characters.
This is due to the restrictions of the transport protocol and to allow interoperabil-
ity on the network. However, the underlying back end may choose to have a dif-
ferent storage type. To send arbitrary binary data over the network, they can for
example be UU-Encoded. In this case the applications themselves must take care
of interoperability.

Storage type: Storage types are the data types used by the storage back ends to
store the metadata values. They are implementation dependant, however all im-
plementations  must  support  the value  strings  of  variable  length used  for  the
transmission over the network.

Interface Definition
The following is the list of web-service interface methods provided through the
SOAP protocol, a WSDL file can be found at [6]. First the methods to manipulate
entries: 

int addEntry(string entry, string type)

This method adds an entry into the catalogue, where type is the the type of
the entry: either “Collection” or “Entry”. An implementation could provide
additional types, for example collections which inherit schemas from parent
collections, views or indices.

Return values: MD_SUCCESS, MD_ERR_NOENT (parent collection does not
exist),  MD_ERR_PERM, MD_ERR_INT, MD_ERR_TYPE, MD_ERR_EXIST

2



int addEntries(list<string> entries, list<string> types)

This method is a bulk version of the above method. It adds a list of entries
into the catalogue, where types is the the type of the entry: either “Collec-
tion” or “Entry”. 

Return values: MD_SUCCESS, MD_ERR_NOENT (parent collection does not
exist), MD_ERR_ILCMD (size mismatch or illegal type), MD_ERR_PERM,
MD_ERR_INT, MD_ERR_EXIST

int removeEntries(string pattern)

Removes all entries matching pattern (including a collection) from the
catalogue. Collections can only be removed if they are empty.

Return values: MD_SUCCESS, MD_ERR_NOENT, MD_ERR_PERM,
MD_ERR_INT, MD_ERR_NEMPT

int listEntries(string pattern, Handler &handler)

Lists all entries matching pattern (including collections) and their types.
The function fills a handler which can be used to iteratively retrieve the res-
ult and which is passed as a reference. The handler is a structure of type
Handler, which gives access to the following fields:

struct Handler {

handle_t handle;

DataChunk chunk;

} 

struct DataChunk {

list<string> values;

bool last;

}

The values list in the DataChunk member contains alternating the entry and
its type of as many entries as the implementation chooses to provide in one
chunk. While the last property is not set and no error is returned, the get-
Next() function described below can be called using handle to retrieve
more results.

Return values: MD_SUCCESS, MD_ERR_NOENT, MD_ERR_PERM, MD_ERR_INT

int getNext(handle_t handle, DataChunk &chunk)

This method is used to retrieve results from after calling methods which re-
turn an iterator like getAttr(), listAttr() or find().

Return values:  MD_SUCCESS, MD_ERR_ILCMD (the session handle was bad or
the last entry was already read.), MD_ERR_ABORT

int abort(handle_t handle)

This method is used to abort requests which return an iterator.

Return values: MD_SUCCESS, MD_ERR_ILCMD, MD_ERR_ABORT

Another way of listing entries fulfilling certain properties is the find() call de-
scribed  later  on.  The  following  are  methods  to  manipulate  the  attributes  of
entries:

int addAttr(string entry, list<string> keys, list<string> types)

This method is used to add a list of attributes (keys) to an entry (including a

3



collection) which have the storage type types. The command is as a
schema changing command expected not to be called frequently, also be-
cause it may result in a performance costly operation in the back end. It
therefore lacks the capability to apply schema changes to several entries as
bulk operations. This is further alleviated if an implementation chooses to
have only per collection schemas, in this case a schema change acts on all
entries within a collection.

Return values: MD_SUCCESS, MD_ERR_NOENT, MD_ERR_PERM, MD_ERR_INT,
MD_ERR_TYPE, MD_ERR_ILKEY, MD_ERR_ILCMD, MD_ERR_EXIST

int getAttr(string pattern, list<string> keys, Handler &handler)

Reads the values of a list of attributes (keys) for a pattern, returning a
handler. 

Using the handler, the client repeatedly calls getNext() which fills up the
handler structure with the name of the next entry and the associated val-
ues of the attributes until an error is returned or the last filed is true. The
implementation can return the several entries at once with the only limita-
tion that full entries and their attributes will be returned, an entry is never
split.

Return values: MD_SUCCESS, MD_ERR_NOENT, MD_ERR_PERM, MD_ERR_INT,
MD_ERR_ILKEY

int listAttr(string entry, Handler &handler)

Returns the names and types of all attributes via the values field of the
Handler object. The string in values has the format of a declaration of the
respective column in SQL. Entry may currently not be a pattern, so all the
data is returned in one go. However, it may be possible in the future to ex-
tend the semantics.

Return values: MD_SUCCESS, MD_ERR_NOENT, MD_ERR_PERM, MD_ERR_INT

int clearAttr(string pattern, string key)

Clears the value of the attribute named key of all entries matching pattern.
Getting the value of this attribute will henceforth return an empty string.
Note that there is no way to distinguish a cleared attribute from an attrib-
ute which has not yet been set for an entry.

Return values: MD_SUCCESS, MD_ERR_NOENT, MD_ERR_PERM, MD_ERR_INT,
MD_ERR_NOKEY

int setAttr(string pattern, list<string> keys, list<string> values)

Sets the list of keys to the list of values for all entries matching pattern.
This bulk operation is very powerful and needs some setting up of data
structures. On the other hand it can be easily implemented transaction safe
in the back end and also error checking should be easy on the client side.

Note that in the case where pattern does not contain wild cards, the imple-
mentation may choose to insert the new entry into the catalogue if it did not
formerly exist. This is a way of populating the catalogue halving the number
of remote calls (addEntry() spared).

Return values: MD_SUCCESS, MD_ERR_NOENT, MD_ERR_PERM, MD_ERR_INT,
MD_ERR_NOKEY, MD_ERR_EXIST

Finally a method exists to look up entries, including simply listing them:

int find(string pattern, string query, Handler &handler)

Retrieves a list of entries which match the pattern, fulfilling the query con-

4



dition query. The entries are stored in chunks in the value fields of the
handler. The size of this list can be chosen freely by the implementation. 

The query string has the following format in BNF:

 <query> ::= '(' <expression> ')'

 <expression> ::= <predicate> 

| <predicate> <logical>  <predicate>

 <predicate> ::= <function> <comparator> <value>

      | 'not' <predicate>

 <logical> ::= 'and' | 'or'

 <function> ::= <key> | <func> '(' <key> ')'

 <comparator> ::= '=' | '<=' | '>=' | '>' | '<' | '!='

 <func> ::= 'abs' | 'sin' ...

which allows for example query strings like

 (tracks > 10 and sin(angle) <0.5)

Return values: MD_SUCCESS, MD_ERR_NOENT, MD_ERR_PERM, MD_ERR_INT,
MD_ERR_ILKEY, MD_ERR_NOKEY, MD_ERR_QUERY

The this is a list of  errors that can can occur in the remote calls:

MD_SUCCESS (=0): No error, everything went fine.

MD_ERR_NOENT: No such file or directory.

MD_ERR_ILCMD: Illegal command, e.g. size mismatch of arguments.

MD_ERR_PERM: Permission denied.

MD_ERR_INT: Internal error, e.g. connection failed.

MD_ERR_NEMPT: Collection not empty (when removing it).

MD_ERR_TYPE: Illegal storage type

MD_ERR_ILKEY: Illegal key, the key is malformed

MD_ERR_NOKEY: No such key exists for the entry

MD_ERR_ABORT: Request aborted

MD_ERR_EXIST: The entry exists

MD_ERR_QUERY: The query is malformed (aka syntax error)

In general, the methods return 0 (MD_SUCCESS) on return, if no error occurred. In
a programming language that supports  exceptions,  instead of  returning error
numbers, it could be possible to use the exception mechanism instead. Instead of
passing references in the few cases where this is used, values would then be re-
turned.

Related Interfaces
As can be seen from the list of interface calls, the interface design is complement-
ary to the interface of a file catalogue. A file catalogue is expected to have func-
tionality to attach metadata to its entries using the above interface, which allows
the only possible way to implement a high-performance selection of files based on
their metadata as needed for example by user analysis jobs or the workload man-
agement system. Such an implementation will need to share the same table-space
in the database back end to prevent cross-database join operations.

5



Another issue is access control mechanisms. In case fine-grained access restric-
tions are necessary, they should be implemented using the interface of the file
catalogue which already features such an interface, in order not to replicate in-
terface designs. The above mentioned metadata catalogue implementation by the
ARDA team has such an access restriction scheme based on per collection ACLs
implemented. Studies with the implementation showed that it is possible to im-
plement ACLs up to the collection level without noticeable performance penalties,
similar to what AFS provides. However, if ACLs are needed on the entry level,
severe performance problems are expected.

Finally, quotas may be a problem if users are allowed to add metadata freely into
the catalogue. Currently no such interface is defined.

Reality Check
In order to test whether the proposed interface design is a good solution for the
user, can be fully implemented including transaction safety in the bulk operations
and no performance bottlenecks exist, a prototype implementation was  written.
This prototype was intensively tested and also made available to external users.

The prototype design is shown in Figure 1. Applications can either directly talk to
the metadata server through the SOAP interface, or via a streaming interface,
which sends commands to the server as a single text-string which contains the
call's parameters and the server answers with a stream of text as a response.
Both interfaces can be encrypted using SSL and authentication can be done using
grid proxy x509 certifictes. However, currently only the streaming implementa-
tion has these security features enabled. To investigate access controls, the im-
plementation also provides ACL based access control on a collection level, where
users can maintain their own access groups.

The actual work is  being performed by the MD-Server class which queries an
SQL database (in our prototype PostgreSQL) via an ODBC back end. We have ex-
tensively studied the streaming interface and have found that, using different cli-

6

Figure 1: Design of the metadata server prototype: Two interfaces for
clients have been provided, a SOAP interface and a command
interface with TCP streaming. 

Client

Application

C++-API

Security wrapper
GSI

SSL

Application

TE
X

T

SQL

Server

PostgreSQL

File

Server

PostgreSQL

Firewall

Perl-API

TE
X

T

Server
ODBC

SOAP

 Security wrapper
GSI

SSL

MD-Server

Command
Asynchr. Buffer



ents, we were able to explore and test the following issues:

– Usability of the API: The API seems to be minimal, rather complete and fast
(see figure 2 and [7]).

– The memory footprint is small (and independent of the query-size!): 128KB per
connection  for  the server  process  plus  a  database  process  per  connection
(ODBC allows connection pooling which would make it possible to serve all
server threads with only one database instance) for the streaming interface.
The SOAP interface runs several threads managed by a master thread.

– The test implementation is stable and scales well (over a 100 concurrent con-
nections were reached transferring a total of 1.2GB of data without a notice-
able performance penalty on a desktop computer).

– ACLs for metadata can be implemented on a collection level without noticeable
performance loss. In case metadata and file-catalogue live in one table-space
on a relational  database back end, restrictive metadata access permissions
could be implemented without losing performance.

At this point we are confident that the proposed interface is a reasonable starting
point for a generic metadata catalogue which can be used as a foundation to im-
plement the file-metadata or other metadata catalogues for the HEP experiments.

Acknowledgements
The ARDA team would like to thank the gLite team for their fruitful collaboration,
especially R. Rocha, with whom this interface design was discussed extensively.

References
[1] https://edms.cern.ch/file/487871/1.0/EGEE-DJRA1.2-487871-v1.0.pdf

[2] http://lcg.web.cern.ch/lcg/PEB/arda/public_docs/CaseStudies/ami_new.pdf

[3] http://lcg.web.cern.ch/lcg/PEB/arda/public_docs/CaseStudies/
refdb_draft_v0.2.pdf

7

Figure 2: To the left the insertion speed into the catalogue is shown for the ARDA metadata prototype
and the Alien metadata catalogue when creating 1000, 10000 or 100000 entries in a collection
(directory). Also shown is the speed with which 5 metadata attributes are added. To the right the
speed with which entries are selected is shown for a growing number of clients which concurrently
access the catalogue. The interface-implementation scales well up to 100 clients (the maximum
number of connections allowed to the back end database), while the Alien catalogue suffers from
various different server crashes resulting from time-outs. The tests were performed with the streaming
front end, comparisons showed that the performance of the SOAP interface and streaming interface
at least on a local network are compatible.

gLite(Alien)

ARDA

T
im

e 
to

 C
o

m
p

le
ti

o
n

 [s
]

0
# Clients

20 40 60 80 100

5

25

10

15

20

30

35

40

Crashes

Selecting 2.5k entries of 10k

E
n

tr
ie

s
 / 

s 
[1

/s
]

Entries per directory
 0

 5

 10

 15

 20

 25

 30

 1000  10000  100000

Attach MD (ARDA)

Attach MD (Alien)

Create Entry (ARDA)

Create Entry (Alien)



[4] LHCb metadata catalogue study in preparation.

[5] http://ppewww.ph.gla.ac.uk/~shanlon/Metadata/CoreUseCases_v5.pdf

[6] http://project-arda-dev.web.cern.ch/project-arda-dev/metadata/downloads/
Metadata.wsdl

[7] http://lcg.web.cern.ch/lcg/PEB/arda/public_docs/CaseStudies/SOAPTest.pdf

8


