

LHCb experience from recent productions / challenges

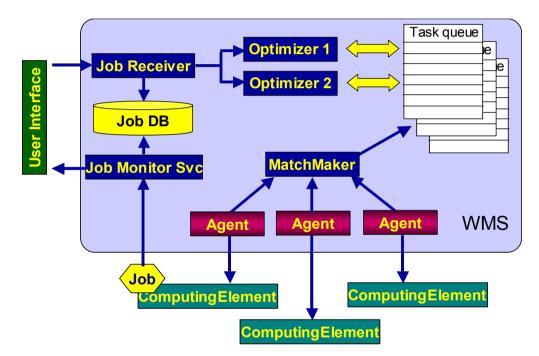
Joël Closier CERN / LHCb SC3 Detailed Planning Workshop

Outline

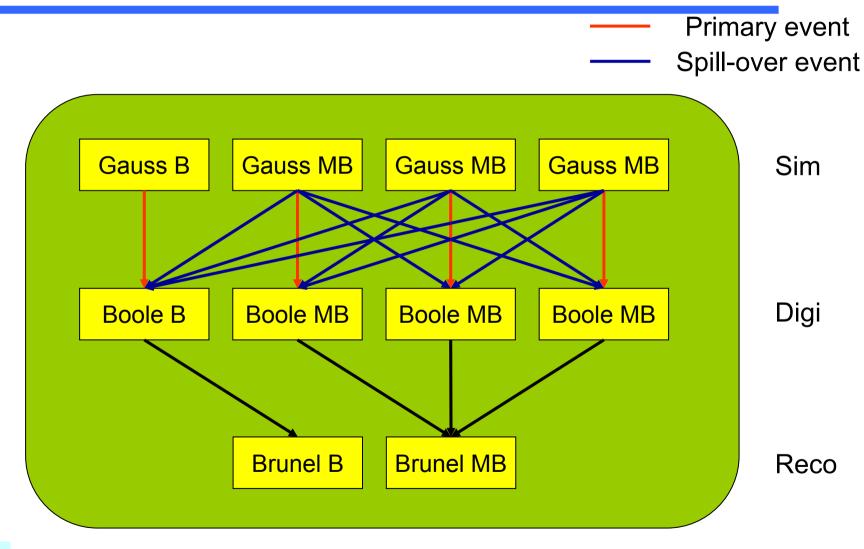
- DC04 phase 1
 - Monte Carlo production on all LCG sites and LHCb native sites
 - All DST transferred at Tier0 and Tier1
 - Summer 2004 (DC04 v1) and December 2004 (DC04 v2)
- DC04 phase 2
 - DST stripping on DC04 v1 data on 3 Tier1s
 - Stripped DST transferred at Tier0 and Tier1
 - March 2005
- RTTC
 - Monte Carlo production on all LCG sites
 - All output after L0+L1 transferred at Tier0
- DC04 phase 2 next round
 - DST stripping on DC04 v2 data
 - Stripped DST transferred at Tier0 and Tier1
 - June 2005

Results of the LHCb experiment Data Challenge 2004 (phase 1)

Summer 2004

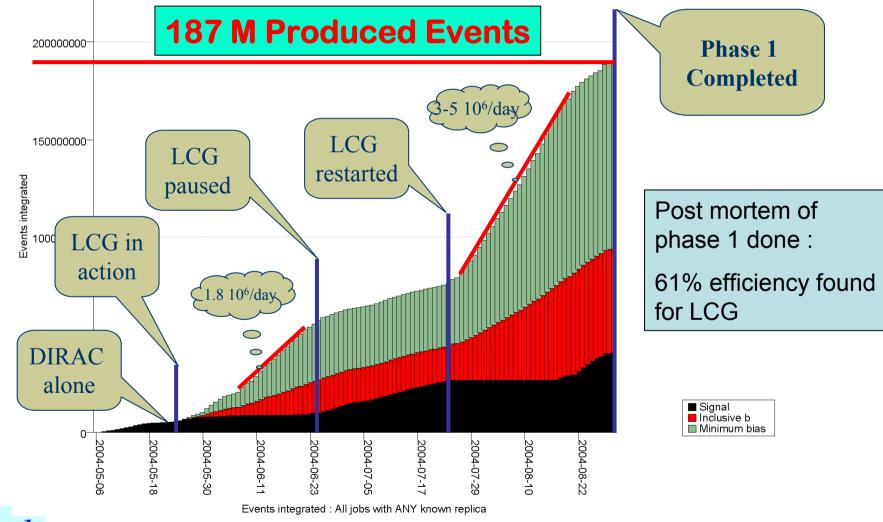

LHCb DC'04 aims

- Main goal :gather information to be used for writing the LHCb computing Technical Design Report
 - Robustness test of the LHCb software and production system
 - Using software as realistic as possible in terms of performance
 - Test of the LHCb distributed computing model
 - Including distributed analyses
 - Realistic test of analysis environment, need realistic analyses
 - Incorporation of the LCG application area software into the LHCb production environment
 - Use of LCG resources (at least 50% of the production capacity)
 - 3 phases
 - Production : MC simulation and reconstruction
 - Stripping : Event pre-selection
 - Analysis


DIRAC workload management

- Realizes *PULL* scheduling paradigm
- Agents are requesting jobs whenever the corresponding resource is free
- Using Condor ClassAd and Matchmaker for finding jobs suitable to the resource profile
- Agents are steering job execution on site
- Jobs are reporting their state and environment to central Job Monitoring service

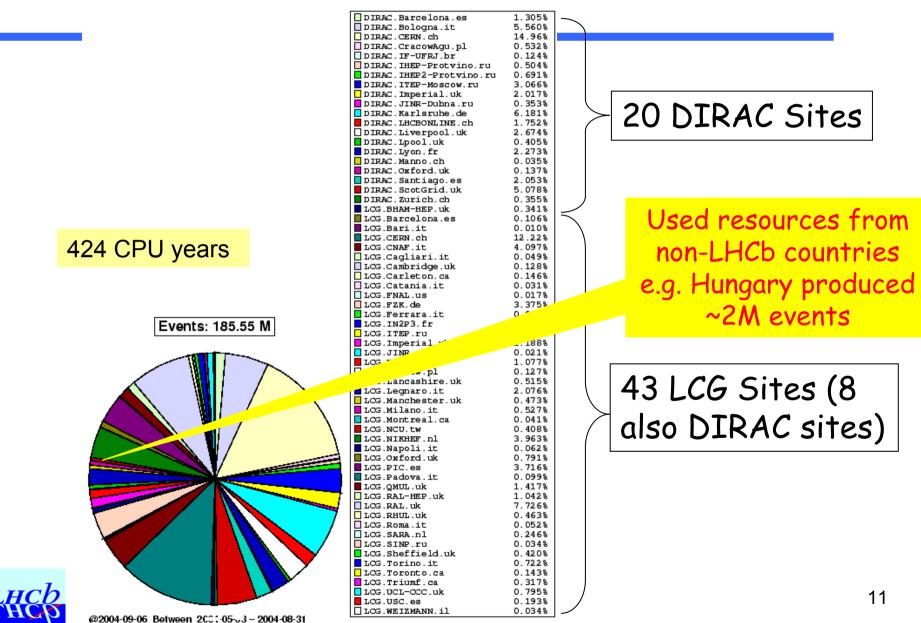
Job workflow


- All the output of the reconstructed phase (DST) were send to CERN (as Tier0)
- Intermediate files were not kept.
- DSTs were also stored in one of 5 centres (these centres map to our expected TIER1)
- TIER1
 - CNAF (Italy)
 - Karlsruhe (Germany)
 - Lyon (France)
 - PIC (Spain)
 - RAL (United Kingdom)
 - NIKHEF (Netherlands) (a candidate towards the end of the DC04 phase 1)

DC'04 performances

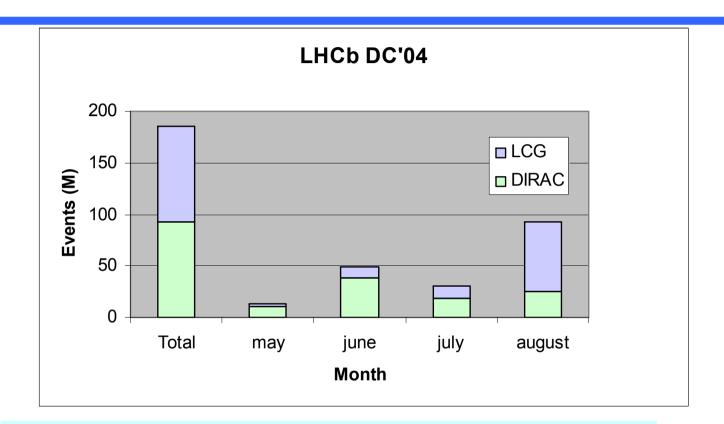
Phase 1 results

LHCb experience



TIER storage

TIER 0	Nb of Events	Size (TB)
CERN	187 557 231	62


Tier 1	Nb of Events	Size (TB)
CNAF	37 129 350	12.6
RAL	19 462 850	6.5
PIC	16 505 010	5.4
Karlsruhe	12 486 300	4
Lyon	4 368 656	1.5

Sites involved

DIRAC-LCG : events share

- 50% of events were produced using LCG
- 20 DIRAC sites + 43 LCG sites have been used
- End of phase 1, 75% produced by LCG

DC'04 lessons

Lessons learnt: DIRAC

- The concept of the light, customizable and simple to deploy agents proved to be very effective
- Easy update procedure propagate bug fixes quickly of DIRAC tools
- Applications software installation triggered by a running job
- LHCb Strategy successful:
 - Submitting "empty" DIRAC Agents to LCG has proven to be very flexible allowing a success rate above LCG alone.
- Most of the central services were running on the same machine
 - Too many processes, high loads
 - \Rightarrow Improve Server Availability
- Improve Error Handling and Reporting.

Lessons learnt: LCG

- After the DC04, we produced a report for LCG team where we highlighted some problems:
 - Upload/retrieval output of job, particular failed jobs
 - Tools to deal with bulk operations
 - CE status collection
 - Add some intelligence on CE
 - Tools to navigate through LOG info
 - HowTo manuals

New production

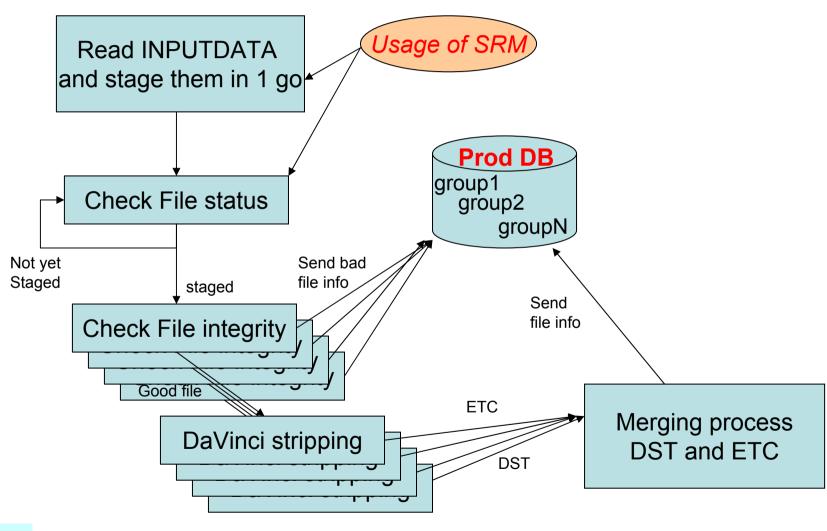
- Due to a software problem, we had to redo part of the production of DC04
- With the same settings we produced in one month 100 M Events without any special babysitting over the 2 week Christmas period.
- efficiency looked the same as first round but no detailed analysis

Conclusions for DCO4 phase 1

- The Production Target was achieved:
 - 186 M Events in 424 CPU years.
 - $\sim 50\%$ on LCG Resources (75-80% at the last weeks).
 - 100 M Events in the new production
- LHCb Strategy successful:
 - Submitting "empty" DIRAC Agents to LCG has proven to be very flexible allowing a success rate above LCG alone.
- Big room for improvements, both on DIRAC and LCG
 - DIRAC needs to improve in the reliability of the Servers:
 - big step already during DC.
 - LCG needs improvement on the single job efficiency:
 - ~40% aborted jobs, ~10% did the work but failed from LCG viewpoint.
 - In both cases extra protections against external failures (network, unexpected shutdowns...) must be built in.
- Success due to dedicated support from LCG team and DIRAC Site Managers

Results of the LHCb experiment Data Challenge 2004 (phase 2)

March 2005



Stripping

- Jobs with several INPUT files (between 40 and 80)
- Jobs sent to site where the data are placed
- Startup late due to LCG functionality not implemented (Storage Resource Management) and installed at some external sites for 1st time for LHCb
- 3 sites used CNAF, CERN and PIC based on CASTOR Mass Storage

Stripping job

Results of the stripping

- 20 M events processed which produced 460K stripped events.
- Not done with LCG.
 - Pressure from physics group
- Logic of these jobs tested and validate.

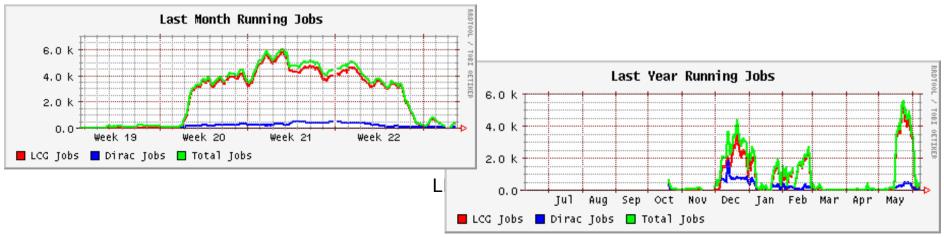
Production for the LHCb experiment Real Time Trigger Challenge

May 2005

RTTC production May/June 2005

- Goal: 150M minimum bias events to feed the online farm and test the software trigger chain
- Work-flow
 - Gauss v19r4 (3 steps)
 - Boole v8r4 (3 steps)
 - MergeRaw.RTTC (2 steps, Boole)
- RAW and DIGI are stored only at CERN
- 2+1 file catalogues in use
 - Book-keeping and Alien
 - LFC integrated in DIRAC
 - Running in production now in Lyon
 - Tests on other sites are ongoing
 - Not yet available on LCG

Available sites


Sites in the production

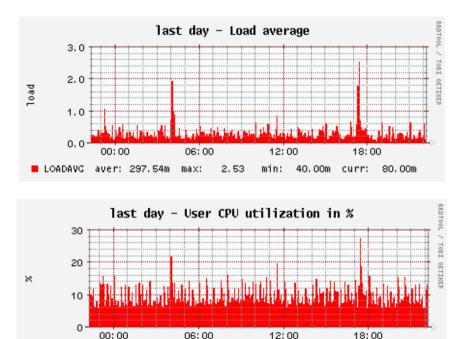
Countries	Dirac site	LCG site] . т
Italy	1	13	S
UK	1	12	N
Spain	0	6	S
Grece	0	5	,
France	1	3	
Russia	0	4	
Swiss	2	2	. ∎ N
Canada	0	3	e
Belgium	0	2	ir
Netherland	0	2	6
Sweden	0	2	
FKZ	0	1] • 7
Cyprius, Romany, Hungary, Brasil, USA	0	1+1+1 LHCD 6 +1+1	xperience

- The RTTC production started since mid of May with a very fast startup
 - In one week almost all available sites in production mode
- More than 150M of events were produced in less than 3 weeks on 65 different sites
- 7 RBs used

Production Results

- 169M of events have been produced
- 3 production type
 - Prod. ID 846 (1500 events per job) \rightarrow 10M
 - Prod. ID 847 (3000 events per job) \rightarrow 84 M
 - Prod ID 848 (2550 events per job) \rightarrow 75 M
 - The final output of events after LO yes is 11 M now avalaible to the bookkeeping
- The production mean rate was of 10 M events per day with 4000 CPUs on avarage, with a peak of over 5000 CPUs

Shared data


Countries	Events produced	
UK	60 M	
Italy	42 M	
Swiss	23 M	
France	11 M	
Netherland	10 M	
Spain	8 M	
Russia	3 M	
Grece	2.5 M	
Canada	2 M	
Germany	0.3 M	
Belgium	0.2	
Sweden	0.2 M	
Romany, Hungary, Brasil,	0.8 M	
USA	LHCb experie	ence

The data reported are preliminary (accuracy at 5%) as the accounting database is being populated now. In few days we'll have more precise numbers

5% produced with plain DIRAC sites 95% produced with LCG sites

DIRAC performance

- Performance in the RTTC production
 - Over 5000 simultaneous jobs
 - Limited by the available resources
 - Far from the critical load on the DIRAC servers

CPUUTILPERCUSER

curr: 12.99

aver:

9,49

max: 27.24

min:

5.56

Gridftp for file transfers

- Using gridftp tools for all the file transfers
 - Data
 - Log files
- All the DIRAC sites were obliged to use gridftp
 - Needs certificates for running local agents
 - Distribution of lcg_utils included with DIRAC
 - Platform independent distribution
 - Needs tools for automatic renewal of CA credentials (CRL's)

Problems met

- 30-40% of jobs aborted on the LCG, most of them at the start up time due to mis-configuration problems.
 - Problem seen also when installing LHCb software in the VO_LHCB_SW_DIR
 - Small or big site are affected in the same way.
- Without a pre-installed software a small fraction of LCG sites had the problem to install the software due to a combination of factor (http server overload, network occupancy, timeouts, etc)

Conclusions for the RTTC

- The RTTC production last just 20 days
- The startup was very fast
 - In few days almost all available sites were in production and the system was able to run with 4000 CPUs maintaining this rate for 3 weeks, with a peak of over 5000 CPUs. Sensible improvement with respect to DC04 data challenge.
- 168 M events produced (11 M events as final output after LO)

Results of the LHCb experiment Data Challenge 2004 (phase 2 next round)

June 2005

LHCb experience

Using SRM

- Stripping activity necessitate the usage of advanced features in the storage handling
 - Staging files before the job starts
 - Checking file availability before the start of the application
- Special Module introduced in DIRAC to deal with SRM based storage
 - Command lines based on the GFAL libraries
 - Still needed direct Castor staging commands to ensure the deletion of the files
- Need more work to incorporate SRM based storage into the DIRAC framework

Stripping Status

- SRM is functional on the three sites CNAF, CERN, PIC
- The stripping test jobs have been submitted and run successfully at CERN, PIC and CNAF
- Some wrong entries on the file catalogue found
 - This is problematic to SRM CASTOR as these files will cause the whole SRM request to fail BUT without notification but files are still staged!
- Output will be sent to the three Tier1s.
- There are not any major problems to start the stripping of the 100M events
 - Some pending problems to be solved, but it should start now!

Summary

- Monte Carlo production can be run without any major problem
- Pilot agent approach protects us from inherent problems on Grid
 - generally once job starts it runs to completion
- LCG currently providing ~95% of our resource requirements for production
- stripping of data (using SRM) about to be launched