Service Challenge 3 CMS Goals

Lassi A. Tuura Northeastern University

- An *integration test* for next production system
- Main output for SC3 data transfer and data serving infrastructure known to work for realistic use
 - Including testing the workload management components: the resource broker and computing elements
 - * Bulk data processing mode of operation
- Crucial step toward SC4, CMS DC06 and LHC
 - * Failure of any major component at CERN or at a Tier-1 site would make it difficult to recover and still be on track with increased scale and complexity in SC4 and CMS DC06
 - * Focus on alternatives with reasonable expectation of success: need to leave SC3 with functional system with room to scale

CMS Service Challenge Goals Explained

- An integration test for next production system
 - * Full experiment software stack not a middleware test
 - "Stack" = s/w required by transfers, data serving, processing jobs

***** Checklist on readiness for integration test

- *Complexity and functionality tests already carried out,* no glaring bugs
- Ready for system test with other systems, throughput objectives
- (Integration test cycles of ~three months two during SC3)

*** Becomes next production service** if/when tests pass

- Main output: data transfer and data serving infrastructure known to work for realistic use cases
 - *** Using realistic** storage systems, files, transfer tools, ...
 - Prefer you to use standard services (SRM, ...), but given a choice between system not reasonably ready for 24/7 deployment and reliable more basic system, CMS prefers success with the old system to failure with the new one
 - Due to limited CMS resources, please confirm and coordinate with us your infrastructure so we can reach the objectives without excessive risk

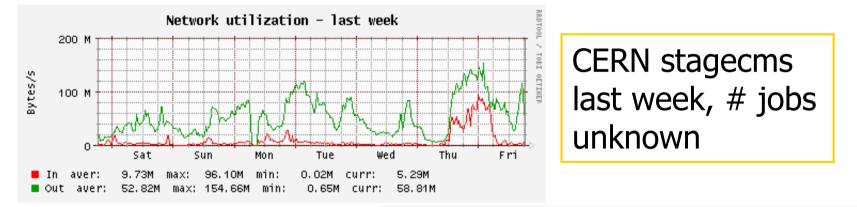
Some Observations

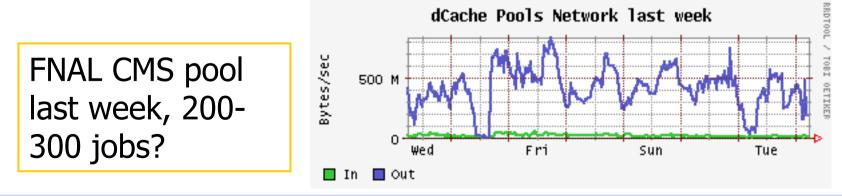
- Give yourself enough time to put services into production
 - * Our experience is that it takes months to bring a site up
 - Reserve enough time (read: months) to debug completely new systems before expecting great results
- You are expected to support what you put into production
 - * Don't plan for heroic one-time effort for throughput phase, you will kill yourself in the service phase
- Choose a services suite that is ready for integration test
 - * CMS needs at least a month after large-scale functionality milestone for deployment into the experiment integration test
 - * For throughput test, everything fully debugged by end of June
 - * Decision to pick fallbacks latest by mid-June (this workshop?)
- Seek to "Evaluate what works, not find out what doesn't"

Input Parametres (I)

CMS DC04

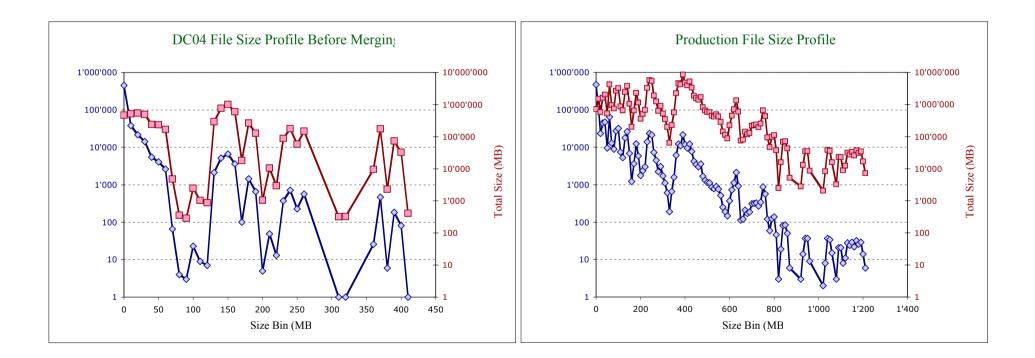
- * Tier 0 to Tier 1 sites
 - ♦ Rate 25 Hz = run completed every ~40 sec
 - Output ~250 MB/run (19 files) =~ 6 MB/s, ~0.5 TB/day


CMS Computing TDR


- * Nominal Tier 1 (peak rates to/from tape)
 - From storage 800 MB/s
 - WAN 5.7 Gb/s in, 3.5 Gb/s out to regional centres
 - Peak data in
 1.8 Gb/s (FEVT+AOD 0.7, AOD re-reco 1.0, MC 0.1)
 - Peak data out
 0.9 Gb/s (serving events to Tier-2s)
- Nominal Tier 2
 - From storage 1 GB/s (32 Mb/s per KSI2K)
 - WAN 1 Gb/s
 - Peak data in 5 TB/day
 - Peak data out 1 TB/day (up to 8 TB/day)
- Estimate factor of five from now to C-TDR values

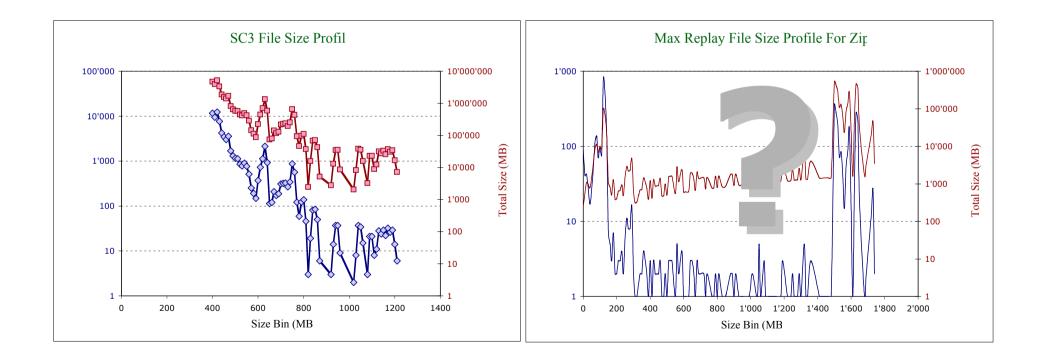
Input Parametres (II)

- Anecdotal statistics: data recently served from production storage systems at CERN, FNAL
 - * Caveat: this is from system network usage monitoring, we don't actually know how much was delivered into applications



Input Parametres (III)

- File size distribution
 - DC04 files
 - Current production files



Input Parametres (IV)

File size distribution

- * Files for SC3 throughput phase (selected >= 400 MB)
- * Files for SC3 service phase (from merging)

Qualitative Goals Throughput Phase

Overview of throughput exercise

- * Throughput to disk and tape at Tier-1s from CERN Tier-0 disk
- * Fan out transfers to selected Tier-2s, same data but less of it
- * Target: transfer and storage systems work and are tuned
 - Using real CMS files and production systems (or to-be production)
 - Sustained operation at required throughput without significant operational interference / maintenance

Concretely

- * Part 1: Data from disk buffer at CERN first to Tier-1/2 disks
 - Tier-2s will be subscribed subset of the data going to Tier-1s
 - Data to Tier-2s are routed via Tier-1s
- * Part 2: Same, but data goes to tape at Tier-1s
- Transfers managed by PhEDEx
- * Files registered to local file catalogue
- Sufficient monitoring

Quantitative Goals Throughput Phase

Rates defined in Jamie's document

- ★ Tier 0 disk to Tier 1 disk
 150 MB/s sustained
- Tier 0 disk to Tier 1 tape
 60 MB/s sustained
- Tier 1 disk/tape to Tier 2 disk ? MB/s sustained
- * Tier 2 disk to Tier 1 disk (tape?) <1 MB/s (!?) sustained
- * Suggest informally 30 MB/s T1 to T2 if bandwidth is available
- In addition: service quality
 - * Transfer failures should have no significant impact on rate
 - ★ Transfer failures <0.1% of files more than 5</p>
 - ★ Catalogue failures after transfer <0.1% of files</p>
 - File migration to tapes
- (keep up with transfers)

Qualitative Goals Service Phase

Overview of service exercise

- * Structured data flow executing CMS computing model
- Simultaneous data import, export and analysis
- * Job throughput at Tier 2 sites
- Concretely
 - * Data produced centrally and distributed to Tier 1 centres (MSS)
 - * Strip jobs at Tier 1 produce analysis datasets ("fake" COBRA jobs)
 - Approximately 1/10th of original data, also stored in MSS
 - * Analysis datasets shipped to Tier 2 sites, published locally
 - May involve access from MSS at Tier 1
 - * Tier 2 sites produce MC data, ship to Tier 1 MSS ("fake" COBRA jobs)
 - May not be the local Tier 1
 - Transfers between Tier 1 sites
 - Analysis datasets, 2nd replica of raw for failover simulation
 - Implied: software installation, job submission, harvesting, monitoring,
 VO + group roles

Quantitative Goals: Tier 1

Service Phase

- For two periods of at least one week each, sustain
 - Same service quality goals as with throughput phase
 - * All transfers and data serving are to/from tape at Tier 1s
 - Data served to worker node jobs: bytes read by instrumented CMS apps (ROOT), not dcap/rfio/... (excludes file transfers!)
 - * Data stored from worker node jobs
 - Transfers from Tier 0
 - * Transfers to Tier 2s (all if more than one)
 - Transfers to Tier 2s (each)
 - * Transfers to Tier 2s (each, minimum)
 - * Transfers to Tier 2s (each, if bandwidth exists)
 - Transfers from Tier 2s (each)
 - * Time from Tier 0 file availability to available for analysis applications at Tier 1
 - * Skim data to 1/10th and store to tape
 - Job success rate
 - Job throughput

200 MB/s

12 MB/s 3 TB/day (~36 MB/s) 1.5 TB/day (~18 MB/s) 1 TB/day (~12 MB/s) >10 MB/s [24+ hours] 30 MB/s [24+ hours] 2.5 MB/s 10% <15 min 33% <30 min (keep up with input) >95%? (to be defined) ?/day (to be defined)

Quantitative Goals: Tier 2

Service Phase

- For two periods of at least one week each, sustain
 - * Same service quality goals as with throughput phase
 - Data served to worker node jobs: bytes read by instrumented CMS apps (ROOT), not dcap/rfio/... (excludes file transfers!)

100 MB/s

- * Data stored from worker node jobs
- Transfers from Tier 1
- Transfers to Tier 1
- * Time from Tier 1 file availability to available for analysis applications at Tier 2
- Job success rate
- Job throughput

2.5 MB/s 1 TB/day (~12 MB/s) 0.2 TB/day (~2.5 MB/s) 10% <15 min 33% <30 min >95%? (to be defined) ?/day (to be defined)

Quantitative Goals: Other Service Phase

Various constraints

- * Tier 1 strip jobs to keep up with incoming data
- ★ Tier 1 tape system able to migrate files at incoming rate (T0 + T2s)
- * Tier 1 data export able to keep up with data-producing jobs
- * Tier 2 data export able to keep up with data-producing jobs

Other components

- Resource broker able to accept jobs
- * RB and CEs/WNs able to process jobs
- * Grid infrastructure-related job failure rate
- Still undefined (or monitored) quantities
 - * Latency from data block request to delivery
 - * Number of data requests processed by Tier 1
 - * File delay from request to start of transfer for MC and hosted data
 - * Time for file to sit in Tier-2 cache
 - Frequency of Tier-2 cache refresh

N secs (to be defined) N/day (to be defined) <5% (to be defined)

Checklist Goals

Service Phase

- Automatic installation of CMS software works
- PhEDEx available, all file transfers executed with PhEDEx
- PubDB available, automatically updated from PhEDEx, updates RefDB
- Harvesting of job output files works: injected to PhEDEx, transferred
- File catalogue operational
 - Automatically updated by file transfers, harvesting
 - Functional for all jobs running on worker node
- UI installed with access to CMS software, test data samples accessible
 - * Can compile, test, debug and submit CMS jobs to all sites from UI
 - * Can receive jobs from all other CMS sites
 - * "All sites" = "All CMS sites participating in the challenge"
 - Submit = "Submit using CRAB", "Run" = "As submitted fro CRAB"
- Worker nodes have access to CMS environment
 - * Software, site configuration scripts, file catalogue, harvest agents, ...
- General monitoring sufficient (to be defined)
- Optional: BOSS job monitoring provided (UI, database) and works

- Total data capacity
 - * 50 TB from CERN to at least two Tier 1 sites
 - * $\sim 10 \text{ TB}$ from CERN to other Tier 1 sites
 - ★ ~5 TB to each Tier 2
 - * 5-10 TB T1/T1 analysis dataset transfers
 - ✤ 50 TB T1/T1 2nd raw replica transfers (for simulating Tier 1 failover)
- Data from both throughput and service phase can be discarded after a while
 - * Data for service phase may need to be kept for a while (month)
 - Data for throughput phase can be recycled after a day or so
- *Most likely* no need for CPU capacity *dedicated to the service phase*
 - * Submitting jobs to normal worker nodes, expect access to SC storage
 - * Reasonable capacity available for two or three periods of a week at a time
- When integration tests have passed, services can go into production
 - Resources expected to remain for testbed environment

SC3 Services In Test Services for all sites (I)

- Data storage
 - # dCache, Castor or other (xrootd, gpfs, ...)
 - * SRM interface highly desirable, but not mandatory if unrealistic
- Data transfer
 - * PhEDEx + normally SRM, can be + GridFTP see Daniele's presentation
 - * CMS will test FTS from November with other experiments (ATLAS, LHCb)
- File catalogue
 - * The "safe" choice is POOL MySQL catalogue
 - * Big question will catalogue scale for worker node jobs
 - Currently using XML catalogues from worker nodes
 - * LCG favours LFC, but first step to CMS validation not even started
 - LFC exists, but no POOL version that can use it, and thus no CMS software
 - Existing CMS software to date will not be able to use LFC
 - * US-CMS will test Globus RLS instead of LFC / MySQL on some sites
 - Same caveats as with LFC
 - Not planning to test EGEE Fireman yet
 - * Note: in future possibly "trivial file catalogue" (= storage name space)

SC3 Services In Test Services for all sites (II)

- Software packaging, installation, publishing into information system
 - * Either central automated installation, or using local service
 - * So far, central automated is not really very automated...
- Computing element and worker nodes
 - * In particular, how the CE obtains jobs (RB, direct submission?)
 - Interoperability between different grid variants
- Job submission
 - * Including head node / UI for submitting
 - Interoperability between different grid variants
- Job output harvesting
 - * CMS agents, often configured with PhEDEx
- (These services require solutions for all grid variants)

SC3 Services In Test

Services for some sites

PubDB / DLS

- * Backend MySQL database + web server interface for PubDB
- Job monitoring and logging
 - BOSS + MySQL database + local agents
- File merging
 - * Agents running at the site producing data
- (These will evolve and be replaced with middleware improvements)

Support servers (I)

- Server-type systems required at each site
 - * UI / head node for job submission (public login)
 - * Storage space for CMS software installation (single root for all)
 - * "Small databases" server for CMS services (see below, MySQL)
 - * File catalogue database server (presumably MySQL on most sites)
 - ***** Gateway-type server for PubDB, PhEDEx, job output harvesting
 - PubDB needs web server, PhEDEx local disk (~20 GB sufficient)
 - Typically installed as UI, but not public login (CMS admins only)
 - For SC3, one machine to run all agents is enough
 - For SC3, requires outbound access, plus access to local resources
 - PubDB requires inbound HTTP access, can install under any web server
 - The agents do not require substantial CPU power or network bandwidth, "typical" recent box with local disk and "typical" local network bandwidth should be enough (CERN gateway dual 2.4GHz PIV, 2 GB memory – plenty)

Support servers (II)

- Optional gateway services at some sites
 - BOSS job monitoring and logging
 - Local MySQL / SQLite backend per user on UI (MySQL can be shared)
 - Optional real-time monitoring database to be discussed
 - BOSS itself does not require gateway server, only databases
 - File merging
- Service + operation of CMS services by CMS people at the site
 - * Co-operation of local site admins and CMS people at the site
 - * May have help from CMS people at your Tier 1, ask

Site Service Choices Tier 0/1s

CERN

- Storage: Castor/SRM
- Transfers: PhEDEx/SRM (srmcp)
- File catalogue: POOL LFC Oracle
- Does CERN participate as T1?
- ► FNAL
 - Storage: dCache/SRM
 - Transfers: PhEDEx/SRM (srmcp)
 - File catalogue: POOL Globus RLS
- CNAF
 - Storage: Castor/SRM
 - Transfer: PhEDEx/SRM (srmcp)
 - File catalogue: POOL LFC (Type?)
- ► RAL
 - Storage: dCache/SRM
 - Transfers: PhEDEx/SRM (srmcp)
 - File catalogue: POOL LFC (Type?)

PIC

- Storage: Castor/SRM
- Transfers: PhEDEx/SRM (srmcp)
- File catalogue: POOL LFC? (Type?)
- FZK
 - Storage: dCache/SRM
 - Transfers: PhEDEx/SRM (srmcp)
 - File catalogue: POOL LFC? (Type?)
- ASCC
 - Storage: Castor/SRM
 - Transfers: PhEDEx/SRM (srmcp)?
 - File catalogue: POOL LFC? (Type?)

Site Service Choices Tier 2s

- US: Florida, Wisconsin, San Diego, Caltech (+ Purdue, Nebraska, MIT?)
 - Storage: dCache/SRM
 - Transfers: PhEDEx/SRM (srmcp)
 - File catalogue: POOL Globus RLS (POOL MySQL at some?)
- Italy: Legnaro
 - Storage: Castor?
 - Transfer: PhEDEx/Globus?
 - File catalogue: ?
- Spain: CIEMAT
 - Storage: Castor?
 - Transfer: PhEDEx/Globus?
 - File catalogue: ?

- UK: Imperial
 - Storage: dCache/SRM
 - Transfer: PhEDEx/SRM (srmcp)
 - File catalogue: POOL MySQL?
- Germany: DESY
 - Storage: dCache/SRM (+ tape)
 - Transfer: PhEDEx/SRM (srmcp)
 - File catalogue: ?
- Taiwan: ?

Typical Configuration Service Suite

- One UI for job preparation etc.
 - * Or "AFS UI"-like shared installation as available for CERN lxplus
- One CMS-dedicated UI-installed gateway system
 - ★ ~20 GB local disk required
 - * Runs PhEDEx, PubDB tools, output harvesting
 - * Plus any other CMS-specific services (e.g. merging agent)
- One MySQL database server
 - * Runs database for PubDB, BOSS
 - Runs database for file catalogue
 - Should not be the gateway server
 - * In future, assumed to be CMS-dedicated, not required in SC3
- Web server
 - ***** For PubDB, can be the gateway or another box

+ Accessible monitoring of all of this!

Typical Configuration PhEDEx

▶ Single UI-installed system, ~20 GB local disk required

* Follow deployment guide to install everything on local disk, avoid network file systems to avoid unnecessary agent crashes

Deployment/InstallOracleClient \$BASE \$TOOLS

Deployment/InstallPerlModules \$TOOLS

Deployment/InstallPOOL -standalone -arch SLC3 \$TOOLS

- emacs Custom/MySiteName/Config
 - # follow guide

Utilities/Master -config Custom/MySiteName/Config start

- * Load your certificate proxy to your local MyProxy server
 - See Custom/CERN/ProxyRenew cron script
- * Archive your transfer logs into some secure backed-up location
 - See Custom/CERN/LogArchive cron script
- Watch the monitoring at http://cern.ch/cms-project-phedex
- Watch the logs :-)

Summary

- Integration test for the next production service
 - * Testing many new components ready for the step
 - * Choose new components and fallbacks wisely
 - Many completely new systems rather a concern
 - * When will CERN be tested as something more than a Tier-0 site?
- Aimed for data transfer and data serving infrastructure
 - * CMS welcomes many new sites to join!
 - * Opportunity for significant increase the infrastructure available for physicists in painless manner and readiness towards LHC startup!

Contact Information

- CMS main points of contact
 - Wiki https://uimon.cern.ch/twiki/bin/view/CMS/SWIntegration
 - * List <cms-computing-sc@cern.ch>

Overall service challenge coordination

- # Jamie Shiers
- <jamie.shiers@cern.ch>
- * General <service-challenge-tech@cern.ch>
- CMS computing coordination
 - * Lothar Bauerdick <bauerdick@fnal.gov>
 - * David Stickland <david.stickland@cern.ch>
- CMS overseers for challenge / integration
 - ✤ Ian Fisk
 - Stefano Belforte
 - * Lassi A. Tuura

- <ifisk@fnal.gov>
 - <stefano.belforte@ts.infn.it>
 - <lassi.tuura@cern.ch>