LHCb plans for SC3

A.Tsaregorodtsev, CPPM, Marseille

SC3 Workshop, 14 June 2005, CERN

LHCb SC3 goals

Phase 1

 Demonstrate Data Management to meet the requirements of the Computing Model

Phase 2

- Demonstrate the full data processing sequence in real time
- Demonstrate full integration of the Data and Workload Management subsystems

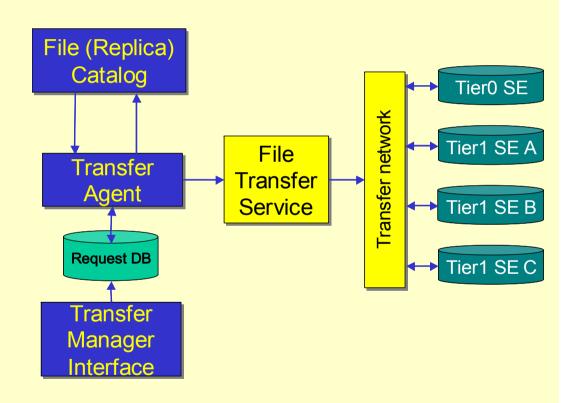
General approach

- Maximum use of centralized components
 - → LHCb is a "small" experiment
 - Do not have 24/7 support by LHCb experts on sites
 - No dedicated LHCb sites
 - Minimize synchronization problems
 - Add extra components (mirrors) as a matter of load balancing as need would be
- Keep a fallback solution for all the components
 - Catalogs, data moving tools, monitoring, etc

Phase 1: Data Moving

Phase 1 goals

- Moving of 8 TB of digitised data from CERN/Tier-0 to LHCb participating Tier1 centers in a 2-week period.
 - The necessary amount of data is already accumulated at CERN
 - The data are moved to Tier1 centres in parallel.
 - The goal is to demonstrate automatic tools for data moving and bookkeeping and to achieve a reasonable performance of the transfer operations.
- b) Removal of replicas (via LFN) from all Tier-1 centres


Phase 1 goals (cont'd)

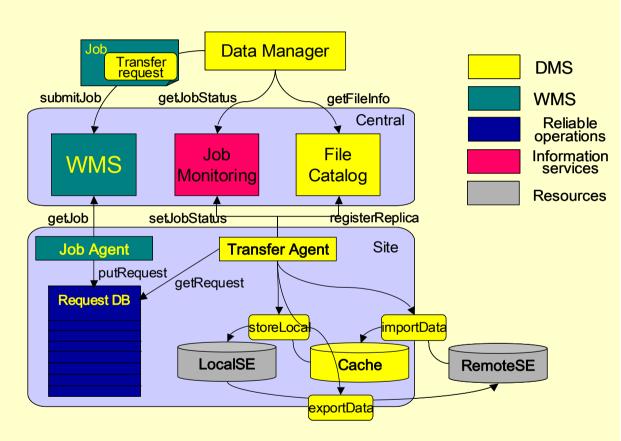
- c) Moving data from Tier1 centre(s) to Tier0 and to other participating Tier1 centers.
 - The goal is to demonstrate that the data can be redistributed in real time in order to meet the stripping processing.
- d) Moving stripped DST data from CERN to all Tier1's
 - The goal is demonstrate the tools with files of different sizes
 - Necessary precursor activity to eventual distributed analysis

File Transfer with FTS

- Start with central Data Movement
 - FTS+TransferAgent+ RequestDB
- Explore using local instances of the service at Tier1's
 - Load balancing
 - Reliability
 - Flexibility
- TransferAgent+ReqDB are to be developed
 - Requires access to FTS service now

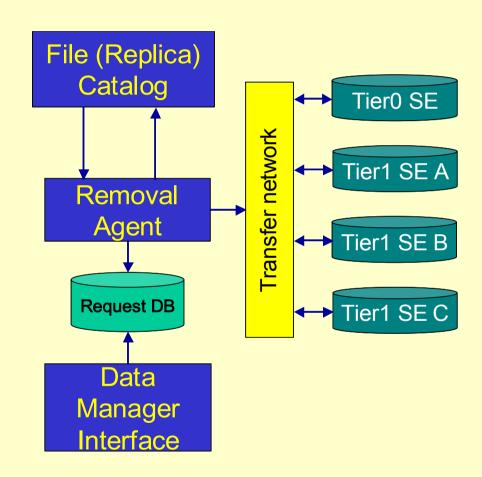
Transfer Agent

- Gets transfer requests from Transfer Manager;
- Maintains the pending transfer queue;
- Optimizes transfers in terms of:
 - Number of simultaneous transfers for a given channel (end point source/destination);
 - → Optimal source replica for a given destination
- Validates transfer requests;
- Submits transfers to the FTS;
- Follows the transfers execution, resubmits if necessary;
- Updates the replica information in the File Catalog;
- Accounts for the transfer characteristics:
 - Start/execution time;
 - Effective bandwidth.


FTS requirements

- Handles transfer requests
- Provides transfer accounting information
 - → Transfer start time
 - Transfer execution time
 - Effective bandwidth, percentage of the total available bandwidth
- Notifications of the transfer state changes:
 - States: received, ready, running, done
 - Otherwise keep polling

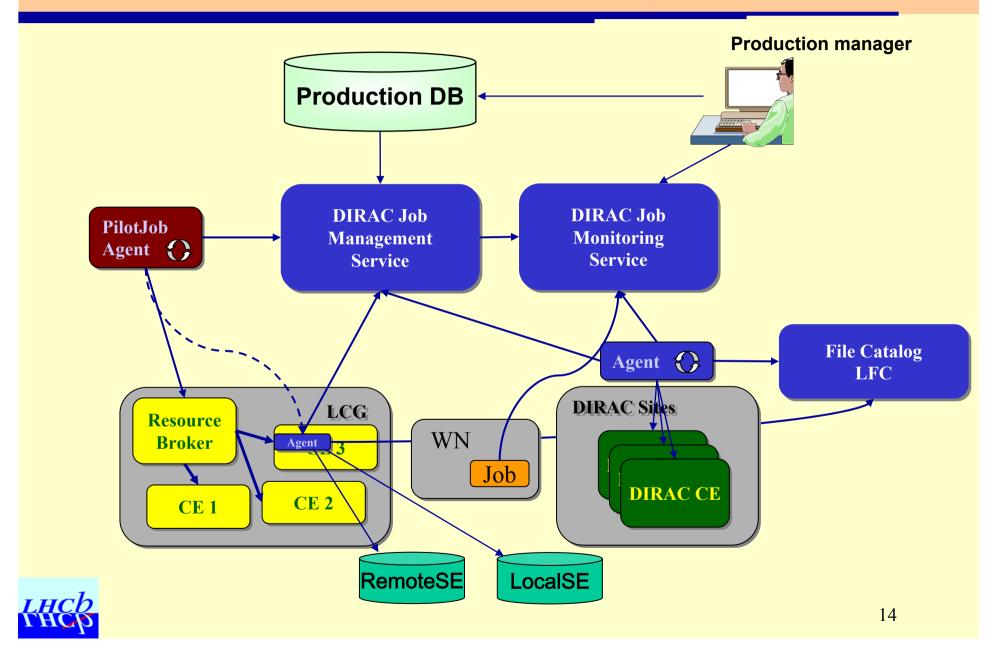
Existing File Transfer framework


- Keep existing tools as a fallback solution
- Using both gridftp or FTS file transport for data import/export
- Might merge eventually in a single system

File removal

- Should be fast to allow efficient storage management
- Central Removal Agent
 - Might be delegated to local agents
- Removing all the remote replicas with eventual retries of failures
- Update of the File Catalog

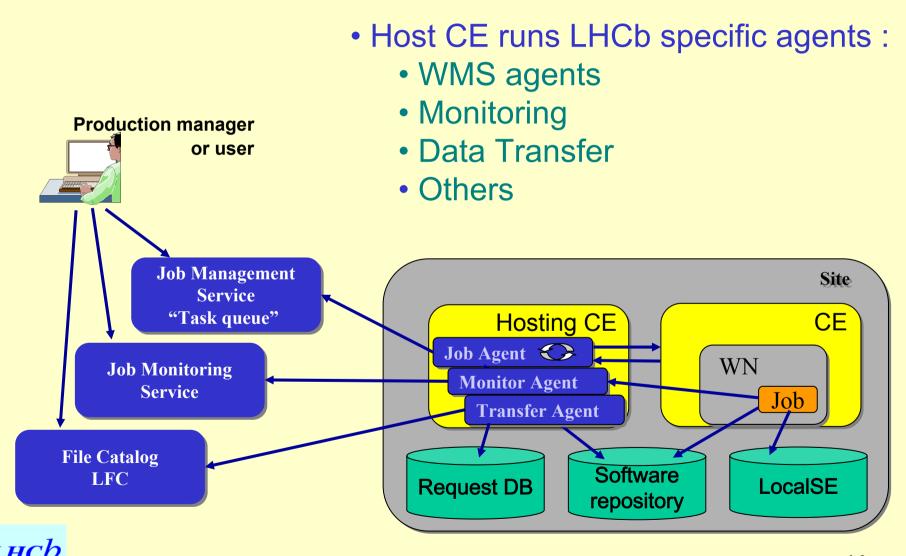
Phase 2: Full Data Processing chain



Phase 2 goals

- MC production in Tier2 and Tier1 centers with DST data collected in Tier1 centers in real time followed by Stripping in Tier1 centers
 - MC events will be produced and reconstructed.
 These data will be stripped as they become available
- Data analysis of the stripped data in Tier1 centers.

Data production on the grid



DIRAC overlay network

- The DIRAC overlay network paradigm is first of all there to abstract heterogeneous resources and present them as single pool to a user:
 - LCG or DIRAC sites or individual PC's
 - Single central Task Queue is foreseen both for production and user analysis jobs
- The overlay network is dynamically established
 - No user workload is sent until the verified LHCb environment is in place

On-site LHCb agents

VO specific agents

- Dedicated VO box is an attractive solution
- LHCb offers to explore another solution Hosting CE
 - Might be more acceptable on (smaller) sites.
- Agents submitted as jobs
 - → Through jobManager-fork queue
- Agents credentials:
 - User certificates
 - Need MyProxy service available
 - + Host certificate ?
- Running fully under responsibility of the VO
 - Site managers might want to examine the start-up scripts and software to be executed
- Need access to managed local storage
 - Software installation
 - Request "Database"

VO specific agents: MonitorAgent

- Jobs are sending monitoring information through job wrappers:
 - Application status
 - Environment parameters
- MonitorAgent
 - Buffers the monitoring information for reliable transfer for Job Monitoring service

VO specific agents: TransferAgent

- TransferAgent:
 - Collects data transfer requests from successful jobs
 - Maintains data transfer/registration requests database
 ⇒ Files, sqlite, MySQL
 - Initiates transfer:
 - Direct gridftp
 - Through FTS
 - Monitors the transfers
 - retries transfers in case of failures
 - Registers the newly created replicas to the File Catalog
 - Retries registration in case of immediate FC unavailability.

VO specific agents: Other

- Other services can be also considered
 - → MonALISA, xrootd possibly shared with others
 - → JobAgent
 - Can be added when gLite CE will become available
 - Getting jobs from DIRAC Task Queue
 - Installing the necessary software
 - Submitting to local CE

+ ...

SC3 services needed by LHCb

Resources

- → CE service
- → SE service
 - SRM v1.1 interface to MSS
 - gridftp accessible

Grid Catalogs

- Dedicated LFC central catalog
 - Read-only mirrors on Tier1 sites
- Dedicated FiReMan central catalog
- Dynamically generated Pool XML slices to connect to applications

Data transfer

- → FTS
 - Central FTS engine at CERN
 - FTS clients in Tier1(2) centers
- gridftp access to SE's should be still available

CE service

- Provide necessary information for taking a scheduling decision:
 - VO waiting/running jobs
 - Total waiting/running jobs if resources are shared with other VO's
- Job manipulation/information interface
 - submit(),kill()
 - getJobStatus()
- More advanced features eventually
 - getTimeLeft()
 - reserveScratchSpace()
 - **+** ...
- Stays to see if gLite CE will provide this functionality

SE service

- SE level v1.1 is foreseen for SC3
- This level is quite limited and chosen as a temporary compromise
 - → LHCb was advocating v2.0 level
 - Need for file pinning
 - Need for storage name space management
 - Need for storage browsing
- ◆ LHCb will be willing to participate in early tests of v2.0
- Physical file name space management
 - → The same structure as for LFN name space
 - Facilitate problems debugging, integrity checks, etc
 - Simplifies data access tools

File Catalog use

- We will start with central world-readable LFC full catalog
 - Used both as Storage Index and Replica Catalog
 - Stress test the centralized solution
 - ~10M entries, ~100M replicas, ~100Hz queries rate
- Add read-only redundant mirrors on Tier1 sites as a load-balancing optimization
 - All the updates are still through the central master catalog
 - Mirror updates "as soon as feasible"

Things to be done

For Phase 1 to start in September we have to develop:

- Data Transfer Agents
 - Using FTS as transport
 - Need FTS service and client tools now
- LHCb agents (applications) orchestrating the data processing chain in real time
 - → They are using all the required services
 - We need access to these services now to start the development
- Dedicated manpower is foreseen

