ATLAS & Service Challenges 3

SC3 workshop CERN June 13-15 2005

Gilbert Poulard (CERN PH-ATC)

ATLAS & SC3

- □ ATLAS is highly interested to participate to SC3
 - Continue to test and validate its Computing Model
 - Pursue the integration of
 - Production System (ProdSys)
 - > ATLAS Data Management system (DonQuijote)
- □ Also interested in using COOL for the conditions data (calibration and alignment)

ATLAS & SC3

- ☐ Intends to participate to:
 - Preparation phase
 - Throughput phase
- □Run a Tier-0 exercise
 - Reconstruction
 - ESD, AOD, TAG production
 - With distribution of data from Tier-0 to Tier-1's
- ☐ Test Distributed Monte Carlo production
 - With concentration of data in Tier-1's

ATLAS & SC3: preparation phase

- "gLite FTS" has just been released
 - We intend to test it asap
 - We will still keep an eye on CMS PhEDEX
- □ Need to understand the SRM issues
 - We said already that SRMCopy is important for us
- Plans (until July)
 - 1) Test CERN -> BNL transfer with "gLite FTS" (no Don Quijote)
 - 2) Test with FTS "within" DQ
 - 1) More file transfers; more sites
 - 3) More integration within DDM ready for July

ATLAS & SC3: preparation phase

- We see FTS as a service
- We want to use it (now) as it is, even if is fairly simple and even if it has less functionality than DQ
 - Because it uses GridFtp and SRM
 - And we don't need to handle the GridFtp and SRM errors
- We don't foresee major integration issues
 - Both DQ and FTS have "transfer queues"
 - DQ will ask FTS to do the transfer
 - Later on we will handle the "priority" issues
- We want to test all kind of transfers
 - Disk -> Disk; Tape -> Disk; Disk-> tape; Tape-> Tape
 - With all kind of data (Dummy; small files as AOD; large files)
- At BNL
 - Somebody will take care of the installation; maintenance and testing
- ☐ For testing we don't need too much hardware resources (1 machine is probably enough)

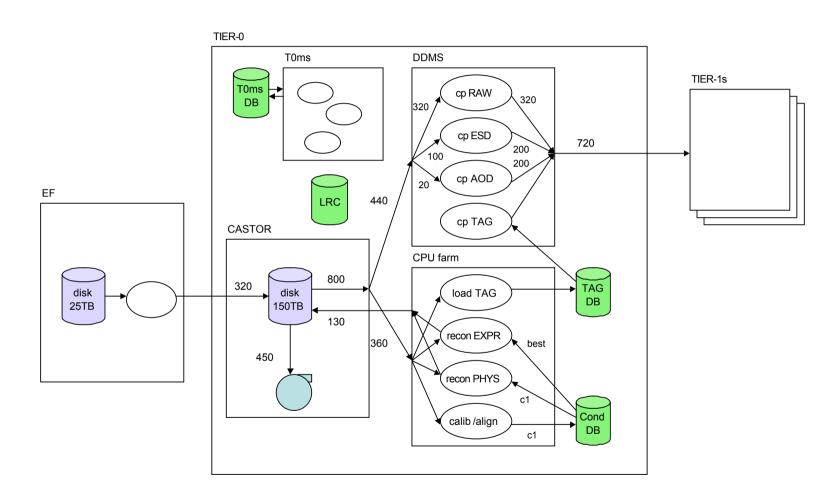
□In July

- Scalability test
- With "commissioning" (real) data if available
- With "Rome Physics workshop" data
 - > Small and large files (~100 MB; ~500 MB; ~1.8 GB)

September

- ATLAS release 11 (mid September)
 - Will include use of conditions data base and COOL
- We intend to use COOL for several sub-detectors
 - > Not clear how many sub-detectors will be ready
 - > Not clear as well how we will use COOL
 - Central COOL database or COOL distributed database
- Debug scaling for distributed conditions data access calibration/alignment,
 DDM, event data distribution and discovery
- TO exercise testing
- A dedicated server is requested for the initial ATLAS COOL service
- Issues on FroNtier are still under discussion and ATLAS is interested
- Data can be thrown away

- □ > Mid-October
 - Service phase: becomes a production facility
 - Scalability test
 - Using more data and more sites
 - Operations at SC3 scale producing and distributing useful data
 - New DDM system deployed and operating
 - Conduct distributed calibration/alignment scaling test
 - Progressively integrate new tier centers into DDM system.



- → Mid-October; we intend to run:
 - Tier-0 exercise
 - Reconstruction at Tier-O et production of ESD; AOD; Event collections
 - > Data distributed from Tier-0 to Tier-1s then Tier-2s
 - Distributed Monte Carlo production
 - Data generated on Tier-2s, Tier-1s and are stored on Tier-1s for permanent storage
 - · Use of conditions database will be part of the "game"
 - Reprocessing
 - > Run at Tier-1s, "where the data is".
 - But this will be done in the last months of 2005
 - For DC3 we need to produce "few" 10 Million events
- We don't forget analysis!

- □ Responsibilities (from Computing Model)
 - calibration and alignment
 - first-pass ESD production
 - first pass AOD production
 - TAG production
 - archival of primary RAW and ESD/AOD/TAG
 - o distribution of primary RAW and ESD/AOD/TAG

- ☐ In from Event Filter
 - o 320 MB/s
 - physics
 - calibration/alignment (45 MB/s)
 - > express (6 MB/s)
 - > pathological (<<<)</pre>
- Out to Tier-1s
 - o 720 MB/s
 - > RAW/ESD/AOD/TAG

- ☐ Tier-O components
 - CASTOR Mass Storage System and catalog
 - o CPU farm
 - o conditions DB
 - TAG DB
 - TO management system (+prod DB)
 - o data management system

Tier-0: CASTOR

☐ CASTOR

- input buffer (125 TB) = 5 days
- output buffer (25 TB) = 2 days
- write to tape at 440 MB/s
 - > 320 RAW
 - > 100 ESD
 - > 20 AOD
 - > 0.2 TAG
- no recall from tape in normal operation

Tier-0: CPU

- □CPU farm
 - o recon of physics and express streams
 - calibration/alignment stream -> conditions DB
 - o loading of TAG DB with TAG files

Tier-0: Data Management System

- □ Data Management System
 - o will use (dedicated) ATLAS DDMS
 - is filled with requests to replicate datasets out of TO to T1s
 - expects some catalogs to be filled with information about the files on CASTOR and the datasets

Tier-0: Management System

- □ T0 management system
 - o orchestrates jobs on CPU farm and transfers out to T1s
 - > will fill the DDMS catalogs
 - > will launch jobs and monitor them
 - very similar to ATLAS ProdSys
 - > will build upon ProdSys or use variant of
 - important difference is that system is data-driven rather than task-driven
 - state is persistified in production DB

Tier-0: Reconstruction

- ☐ First pass ESD production
 - starts after "green light" on conditions data
 - o CPU farm matches EF data rate
 - > 15kSI2Ks x 200 events/s = 3000 kSI2K
 - expect to take data only 50k secs/day (60%)
 - > data taking periods are bursty
 - > some margin to process backlog
 - excess capacity is not lost
 - o 2GB in, 625 MB out

Tier-0: AOD production

- ☐ First pass AOD production
 - o light process in CPU
 - streamed into 10 maximally balanced streams
 - > compromise
 - > 10 x more and 10 x smaller files
 - Computing Model proposes to split AOD from ESD
 - > to process 50 AODs into a bigger ESD
 - adds another 100 MB/s to CASTOR reading
 - \rightarrow grouping (50 x) same for all streams
 - alternative is to combine ESD and AOD and group AOD per stream in separate jobs
 - > adds only 20 MB/s to CASOR reading
 - > allows different group sizes per stream
 - does not increase to nr of jobs nor the complexity

Tier-0: TAG production

- ☐ First pass TAG production
 - o combined with AOD production
 - o for robustness no direct upload to TAG DB
 - > first as POOL explicit collections
 - > upload in DB is separate asynchronous process
 - > many small TAG files can be tar'ed before archival on CASTOR

ATLAS & SC3: Summary

- Now-July: Preparation phase
 - Test of FTS ("gLite-SRM")
 - Integration of FTS with DDM
- July: Scalability tests (commissioning data; Rome Physics workshop data)
- □ September: test of new components and preparation for real use of the service
 - Intensive debugging of COOL and DDM
 - o Prepare for "scalability" running
- Mid-October
 - Use of the Service
 - Scalability tests of all components (DDM)
 - Production of real data (MonteCarlo; Tier-0; ...)
- Later
 - "continuous" production mode (data needed for ATLAS DC3)
 - Re-processing
 - Analysis