Detector status and physics programme of the LHCb Experiment

3rd meeting of the TeV4LHC Workshop 30 April 2005

on behalf of the LHCb Collaboration

Tatsuya NAKADA CERN and Ecole Polytechnique Fédérale de Lausanne (EPFL)

1) Introduction Impressive progress made by the B-factory experiments

LHCb experiment is only the "currently approved" b physics programme in >2009

Aim to

- $N(B_d \rightarrow \text{interesting charged decay modes})/\text{one year} > \int_{B_{\text{factories}}} N(t) dt$ - $\mathcal{C}P$ measurements with B_s as good as possible

Searching for new physics appearing in the loop diagrams

Complementary approach to ATLAS and CMS

2008

Running at "low" luminosity $< L > \sim 2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$

Beam pipe

100

IP Z

15000

20000

10000

10mrad stainless steel cone

All distances in mm

Al exit window of VELO tank

25mrad Be cone

10mrad Be cone material

Magnet

magnet assembled, positioned, aligned and switched on

Si in secondary vacuum with the Roman pot technology

Detector Module

Impact parameter resolution

Outer Tracker

Straw drift chambers

40μm Kapton XC-160 + Laminated Kapton-Al

Frame and support structure

full scale prototype fully loaded

VELO + ST + OT + Magnet

SPD/PS Scintillator -Pb-Scintillator Ecal Shashlik Hcal Fe-Scintillator tile

Preshower and SPD

PMT + CW base for Ecal and Hcal

Muon System

Projective pad readout based on MWPC's.

MWPC production

Muom filters

First three Muon filter wall assembled

Last Muon filter against beam background

Trigger and Online

Level-0: Muon, Calorimeter (e, h, γ , π^0), Pile-up veto, Decision Unit prototypes.

Muon processor board

Level-1/High Level Trigger and DAQ

Real-time Trigger Challenge hardware

network switches

CPU farm

HLT rate	Event type	Calibration	Physics
200 Hz	Exclusive B candidates	Tagging	B (core program)
600 Hz	High mass di-muons	Tracking	J/ψ , b $\rightarrow J/\psi X$ (unbiased)
300 Hz	D* candidates	PID	Charm (mixing & CPV)
900 Hz	Inclusive b (e.g. $b \rightarrow \mu$)	Trigger	B (data mining)

Tell1: LHCb common readout board

Subsystem specific firmware to be developed Total number needed 350 boards

3) B physics sensitivity

5

Measurement of Δm_s using $B_s \rightarrow D_s^-\pi^+$ decays Signal/Background (from 10⁷ inclusive bb events) ~ 3 Plot uncertainty on amplitude of fitted oscillation *vs* m_s :

 5σ observation of B_s oscillation for Δm_s < 68 ps⁻¹ (in one year) → LHCb could exclude *full* SM range

Once observed, precise value is obtained: $\sigma_{\text{stat}}(\Delta m_{\text{s}}) \sim 0.01 \text{ ps}^{-1}$

Measurement of sin 2 β is not a central physics goal of LHCb (since so well measured by B factories) but will be an important check of CP analyses + can search for direct CP violating term $\propto \cos \Delta m_d t$

- $B_s \rightarrow J/\psi \phi$ is the B_s counterpart of $B^0 \rightarrow J/\psi K_S$ CP asymmetry measures ϕ_s , the phase of B_s oscillation In Standard Model ϕ_s is small: $\phi_s = -2\lambda^2\eta \sim -0.04$ \rightarrow sensitive probe for new physics
- Final state is admixture of CP-even and odd contributions \rightarrow angular analysis of decay products required $L(t) = (1-R_{-}) L_{+}(t) (1+\cos^{2}\theta_{tr})/2 + R_{-} L_{-}(t) (1-\cos^{2}\theta_{tr})$ Fit for $\sin\phi_{s}$, R_{-} and $\Delta\Gamma_{s}/\Gamma_{s}$

```
120k signal events/year in LHCb

\sigma(\sin\phi_s) \sim 0.06, \ \sigma(\Delta\Gamma_s/\Gamma_s) \sim 0.02

(\Delta m_s = 20 \text{ ps}^{-1})

Including B_s \rightarrow J/\psi\eta will increase sensitivity:

only ~ 7k events/year, but pure CP state
```


 $B_s \rightarrow D_s^-K^+$ and $\overline{B}_s \rightarrow D_s^+K^-$ (b \rightarrow u transition, BR ~ 7 × lower) both tree decays, which interfere via B_s mixing

CP asymmetry measures $\gamma + \phi_s$ Very little theoretical uncertainty, insensitive to new physics

 ϕ_s will be determined using $B_s \rightarrow J/\psi \phi$ decays \rightarrow extract γ

 $B_s → D_s^- π^+$ gives background to $D_s K$ (BR ~ 12 × higher) Suppress using PID

 \rightarrow residual contamination only $\sim 10\%$

5400 signal events/year (LHCb) S/B (from bb) > 1 (at 90% CL) (only 1 bkg event in wider $M_{\rm B}$ window)

Allow for strong phase difference Δ between the two diagrams Fit two time-dependent asymmetries:

Measure 6 decay rates: $B^0 \rightarrow D^0 K^{*0}$, $D^0 K^{*0}$ and $D^0_{CP} K^{*0}$ (+ CP conjugates), where $D^0_{CP} \rightarrow K^+ K^-$ (or $\pi^+ \pi^-$)

Appropriate construction of amplitudes allows both γ and strong phase Δ to be extracted [Gronau & Wyler, Dunietz]

Decays are self-tagging (through $K^{*0} \rightarrow K^+\pi^-$) and time integrated

No penguin diagram contributing to the decay

Mode	Yield	S/B
$B^0 \rightarrow \overline{D^0} (K^*\pi^-) K^{*0}$	3400	> 3.3
$B^0 \rightarrow D^0 (K^-\pi^+) K^{*0}$	500	>0.6
$\mathbf{B}^{0} \rightarrow \mathbf{D}^{0}_{CP}(\mathbf{K}^{+}\mathbf{K}^{-}) \mathbf{K}^{*0}$	600	> 0.7

LHCb annual yields (for $\gamma = 65^{\circ}, \Delta = 0$) $\rightarrow \sigma(\gamma) \sim 8^{\circ}$ (55° < γ < 105°, -20° < Δ < 20°)

Time-dependent CP asymmetries for $B^0 \rightarrow \pi^+\pi^-$ and $B_s \rightarrow K^+K^-$

 $A_{\rm CP}(t) = A_{\rm dir} \cos(\Delta m t) + A_{\rm mix} \sin(\Delta m t)$ $A_{\rm dir} \text{ and } A_{\rm mix} \text{ depend on weak phases } \gamma \text{ and } \phi_{\rm d} \text{ (or } \phi_{\rm s}),$ and on ratio of penguin to tree amplitudes = $d e^{i\theta}$

Under U-spin symmetry [Fleischer] (interchange of d and s quarks)

 $d_{\pi\pi} = d_{KK}$ and $\theta_{\pi\pi} = \theta_{KK}$ \rightarrow 4 measurements, 3 unknowns (taking $\phi_s \& \phi_d$ from other modes) \rightarrow can solve for γ

26k $B^0 \rightarrow \pi^+\pi^-$ events/year (LHCb) 37k $B_s \rightarrow K^+K^- \rightarrow \sigma(\gamma) \sim 5^\circ$

Uncertainty from U-spin assumption Sensitive to new physics in penguins

Time-dependent Dalitz plot analysis of $B^0 \rightarrow \rho \pi \rightarrow \pi^+ \pi^- \pi^0$ permits extraction of α along with amplitudes + strong phases [Snyder & Quinn]

Annual yield ~ 14k events, S/B ~ 1.3 (LHCb)?

20.00

60.00

Complicated 11-parameter fit, studied with toy MC Statistical precision of $\sigma(\alpha) \sim 10^{\circ}$ achievable in one year Study of B⁰ $\rightarrow \rho\rho$ has started, few $\times 10^2 \rho^0 \rho^0$ /year (for BR = 10⁻⁶)

B⁰ → K^{*0}μ⁺μ⁻ suppressed decay (Δ*B* = 1 FCNC), BR~10⁻⁶ Forward-backward asymmetry in the μμ rest-frame $A_{FB}(s)$ is sensitive probe of new physics [Ali *et al*]

LHCb: 4400 events/year, S/B > 0.4 $A_{FB}(s)$ reconstructed using toy MC (two years data, background subtracted) Zero point located to ± 0.04 Rare decay: BR ($B_s \rightarrow \mu^+\mu^-$) = 3.5×10⁻⁹ in Standard Model Sensitive to new physics, can be strongly enhanced in SUSY

LHCb expect 17 selected signal events/year for SM BR Problem to estimate the background: no events selected from full background sample, but only corresponds to $S/\sqrt{B} > 2$

Background estimates (from 1999) differ significantly, update awaited Prospect of significant BR measurement, even for SM value

Other channels

- $B^0 \rightarrow \phi K_s$ is challenging for the trigger Expect ~ 1000 signal events/year in LHCb
- However, if new physics is showing up in $B^0 \rightarrow \phi K_S$, important to also examine other $b \rightarrow s$ penguin decays: $B_s \rightarrow \phi \phi$, KK, $\phi \gamma$... LHCb will reconstruct large samples of each

- Not yet systematically explored: B_c and b-baryon physics
- Recent assignment of high rate output streams from the HLT opens possibility of charm physics: > 10^8 reconstructed D*/year, and inclusive b trigger (*eg* on single μ) should give the equivalent of ~ 10^9 perfectly tagged b-hadron decays/year
- Although detector is under construction, still room to adjust trigger to select channels of topical interest

Systematics

Some potential sources of systematic uncertainty:

- B/B production asymmetry
- Charge-dependent detection efficiencies
- Background asymmetries
- Trigger bias (*eg* for flavour tag, proper-time acceptance)

Some experimental handles available:

- Control channels (*eg* J/ ψ K* for J/ ψ K_S, *etc*)
- Regular reversal of spectrometer B field
- Simultaneous fit of signal and background ($eg D_s K/D_s \pi$)
- Analysis of tagging performance in separate categories (*eg* triggered on B signal/triggered on other tracks)

High rate HLT unbiased samples will allow study using data

4) Use of the TeVatron data

It was (and still is) important to develop the best possible understanding of the events we should expect at LHC and LHCb:

- Tevatron is the machine « closest » to LHC
- Whenever possible, extrapolate from Tevatron data

Relevant quantities:

- affecting minimum bias distributions, hence trigger performance:
 - Track multiplicity, multi-parton collision models, ...
 - Inclusive particle spectra, $p_{\rm T}$ and rapidity distributions, ...
 - Production cross sections (bb, cc, prompt $J\!/\psi,\,\ldots)$
- affecting flavour tagging performance:
 - bb production mechanism, bb correlation
 - Excited b-hadron states (e.g. B^{**}, ...)
- affecting signal statistics:
 - bb cross sections
 - b-quark hadronization fractions (into different b-hadron species)
 - Branching fractions (very little is known for B_s)

Tuning of PYTHIA

Prompt J/ ψ production

 $J/\psi \rightarrow l^+l^-$ is an important handle at hadronic colliders

- Simple to trigger on
- Low background
- Significant physics to be done with $b \rightarrow J/\psi X$ decays
- Default PYTHIA does not reproduce well the proportion of J/ ψ from b decays and from prompt production
 - plan to introduce NRQCD in our simulation, with long distance non-perturbative matrix elements extracted with fits to Tevatron data (both for all's and χ' s)

(both for ψ 's and Υ 's)

5) Conclusions

- LHCb expects to take B physics a significant step further than the B factories:
 - access to other b hadron species + high statistics
 - excellent vertexing and particle ID flexible and efficient trigger, dedicated to B physics
 Many channels studied, differing sensitivity to new physics
- Construction of the LHCb detector is advancing
- Low luminosity (~10³²) required for the LHCb experiment will allow to exploit full physics potential from the beginning of the LHC operation. Machine can do this and we need this.

LHCb yields and background

	Det.	Rec.	Sel.	Trig.	Tot.	Vis.	Annual	B/S
	eff.	eff.	eff.	eff.	eff.	BR	signal	from
	(%)	(%)	(%)	(%)	(%)	(10^{-6})	yield	bb bkg.
$B^0 \rightarrow \pi^+ \pi^-$	12.2	91.6	18.3	33.6	0.69	4.8	26k	< 0.7
$B_s \rightarrow K^+ K^-$	12.0	92.5	28.6	36.7	0.99	18.5	37 k	0.3
$B_s \rightarrow D_s^- \pi^+$	5.4	80.6	25.0	31.1	0.34	120.	80k	0.3
$B_s \rightarrow D_s^{-+} K^{+-}$	5.4	82.0	20.6	29.5	0.27	10.	5.4 k	< 1.0
$B^0 \rightarrow D^{\sim 0}(K\pi)K^{*0}$	5.3	81.8	22.9	35.4	0.35	1.2	3.4 k	< 0.5
$B^0 \rightarrow J/\psi(\mu\mu) K^0_s$	6.5	66.5	53.5	60.5	1.39	20.	216 k	0.8
$B^0 \rightarrow J/\psi(ee) K^0_{S}$	5.8	60.8	17.7	26.5	0.16	20.	26k	1.0
$B_s \rightarrow J/\psi(\mu\mu) \phi$	7.6	82.5	41.6	64.0	1.67	31.	100k	< 0.3
$B_s \rightarrow J/\psi(ee) \phi$	6.7	76.5	22.0	28.0	0.32	31.	20k	0.7
$B^0 \rightarrow \rho \pi$	6.0	65.5	2.0	36.0	0.03	20.	4.4 k	< 7.1
$B^0 \rightarrow K^{*0} \gamma$	9.5	86.8	5.0	37.8	0.16	29.	35k	< 0.7
$B_s \rightarrow \phi \gamma$	9.7	86.3	7.6	34.3	0.22	21.	9.3 k	< 2.4

+ few more channels in TDR

Nominal year = 10^{12} bb pairs produced (10^7 s at L= 2×10^{32} cm⁻²s⁻¹ with σ_{bb} =500 µb) Yields include factor 2 from CP-conjugated decays Branching ratios from PDG or SM predictions