

Latest Physics Results from DØ

Daniel BLOCH IReS Strasbourg

- QCD
- Electroweak
- **Top**
- Higgs search
- New Phenomena
- B physics

Daniel Bloch / IReS-Strasbourg

TEV4LHC Workshop, CERN April 28, 2005 TEV4LHC, CERN, April 28, 2005

م

QCD jets are the main background for many SM measurements and new physics searches

- **Understand** perturbative and non-perturbative QCD (PDF, gluon/quarks radiation, fragmentation, underlying event, ...)
- Benefits from higher beam energy and higher luminosity at Tevatron RunII : study high pτ dijets (or high dijet mass, prelim.2004), theoretical uncertainty at high pτ is dominated by gluon density function at large x
- Search for new physics : compositeness, excited quarks, Z', ...

Daniel Bloch / IReS-Strasbourg

QCD: dijet azimuthal correlations

TEV4LHC, CERN, April 28, 2005 4

W and Z cross-sections

6

W→ev (prelim.2004), μv (NEW prelim.2005), Z→ee, $\mu \mu$ (prelim.2004), $\tau \tau$ (PRD 71, 072004 (2005))

good agreement with SM (Hamberg et al., Nucl.Phys. B359, 343 (1991))

limitations: luminosity (6.5%), PDF (1.5%), Z statistics (here use 100-200 pb^{-1}) allows to validate lepton id !

di-boson final states

top pair cross section

Run I (DØ update 2004+CDF): mt=178.0±4.3 GeV \Rightarrow Run II objective: ±2 GeV

top mass measurement

at present: only preliminary results (160-230 pb⁻¹) main systematic is jet energy scale

> di-leptons (NEW): 13 evts, expect 3 bkg weight each event vs mass hypothesis likelihood fit: 155±14±7 GeV

I+jets ideogram (prelim.2004): use all jet permutations likelihood discriminant for s/b

• will still improve soon

I+jets templates (NEW):

topological and b-tag analyses kinematic fit: keep permutation with best χ^2 mass templates for s/b fit: 170±6±7 GeV (topo) . 171±4±6 GeV (b-tag)

Daniel Bloch / IReS-Strasbourg

- electroweak production of top quark \rightarrow direct meas. of $|V_{tb}|$
- not observed yet
- single top cross section (2.9 pb) close to ttbar (6.7 pb), but much larger backgrounds (mostly W+jets and ttbar) because there are fewer jets
- 2 b-quark jets in each event \rightarrow b-tagging

single top analysis

- Use 11 topological variables (energy or angular/spin related, top mass)
- distinguish e or μ +jets, single or double b-tag, s or t channels
- 3 independent analyses: sequential cuts, decision tree and <u>Neural Network</u> (with 2 NN's: one against W+jets and one against ttbar)

single top results

2009

Higgs search

80

Higgs Sensitivity

Study ('03)

The last unknown brick in Standard Model but also a link to new physics

difficult quest at Tevatron:

various channels (and experiments) to be combined, very sensitive to detector resolution and performance, large backgrounds to be understood and rejected, need high luminosity

present limits:

m_H > 114.4 GeV (95% C.L.) from LEP m_H < 280 GeV (95% C.L.) and $m_{H} = 126 + 73_{-48}$ GeV from EW+mt fit \Rightarrow favors a relatively light Higgs

SM Higgs production at Tevatron:

- gg fusion has highest cross section
- association with W, Z (higgsstrahlung) is 5 times smaller (few 10^{-2} to 10^{-1} pb) but one can trigger on high-p_T leptons

SUSY/Higgs Workshop ('98-'99)

SM Higgs search strategy

10

80

100

120

• mH < 135 GeV: (W/Z)H prod with $H \rightarrow bb$

- $qq' \rightarrow W^* \rightarrow WH \rightarrow Ivbb$: bkgd Wbb, WZ, tt, t(q)b
- $qq \rightarrow Z^* \rightarrow ZH \rightarrow IIbb$: bkgd Zbb, ZZ, tt or vvbb: bkgd QCD, Zbb, ZZ, tt

• mH > 135 GeV: gg \rightarrow H \rightarrow W+W- \rightarrow IVIV

with bkgd Drell-Yan II, WW, ZZ, tt, $\tau\tau$

require to identify leptons (e,μ) , missing E_T from v, tag b-jets, good bb mass resolution, angular correlations for WW

140

160

180

 $m_{\rm H}$ (GeV/c²)

200

Daniel Bloch / IReS-Strasbourg

low mass SM Higgs search

search for SUSY Higgs bosons

- two Higgs doublet fields in MSSM
 - $H_u (H_d)$ couple to up- (down-) type fermions
 - the ratio of their VEV's $tan\beta = \langle H_u \rangle / \langle H_d \rangle$
 - 5 Higgs particles after EWSB: h, H, A, H⁺, H⁻
 - h is 'guaranteed' to be light: $m_h < \sim 130-140 \text{ GeV}$
- at large tanβ, coupling to bb is enhanced wrt SM and at tree level production cross section rise as (tanβ)²
- CP conservation is assumed in the analysis

SUSY Higgs boson search (cont)

TEV4LHC, CERN, April 28, 2005 ¹⁹

News in New phenomena searches

- **R parity Conserving SUSY**: mSUGRA, GMSB (NEW <= presented here)
- R parity Violating SUSY: tri-leptons (prelim.2004)
- Extra Dimensions: Large ED, Randall-Sundgrum graviton (prelim.2004)
- Exotics:
- Z' (prelim.2004),
- technicolor (prelim.2004),
- compositeness in ee (prelim.2004) and µµ (NEW)
- 1rst generation leptoquarks (hep-ex/0412029, PRL),
- superjets (hep-ex/0411084, PRL)

mSUGRA trileptons searches

mSUGRA is the simplest SUSY model, it requires only 5 parameters: m₀, m_{1/2}, tan β , sign(μ), A₀

trileptons final state:

- a clean SUSY signature for chargino-neutralino production, decaying into WZ or sleptons + 2 LSP
- low SM background, but also small signal cross section (σ BR < 0.5 pb)
- strategy: using ~320 pb-1 combine eel, μμl, eμl, μ⁺⁻μ⁺⁻(l), eτl, μτl
- selection:
 2 well identified leptons (pt>~10GeV)
 3rd lepton = isolated track (pt>~5GeV)
 missing ET >~20 GeV

mSUGRA trileptons combined result

(hep-ex/0504032, to PRL)

5,70

- limits provided within $\tan\beta=3$, $\mu>0$, no slepton mixing
- and compared to 3 scenarios (Beenakker et al., PRL 83 (1999) 3780)
 - heavy squarks and light sleptons without negative interference at production)
 - 3lmax: light slepton mass > $m(\chi^{o_2})$
 - large m0: jaugino decay to virtual W*/Z* only
- \bullet adding taus help, even at low $tan\beta$
- better than at Run I (limit ~1.5 pb)
- will still improve with higher luminosity

mSUGRA squark/gluino search

B

- the dominant Br are into jets + missing ET
- 3 mass figures considered:
- . 1) m(\tilde{g})>m(\tilde{q}): accoplanar dijets
- . expected 12.8 ± 5.4 , observed 12
- 2) m(\tilde{q})>m(\tilde{g}): multi (>=4) jets
- expected 7.1±0.9, observed 10
- . 3) m(q̃)~m(g̃): 3 jets
- expected 6.1±3.1, observed 5

GMSB analyses

if $\widetilde{\chi}_1^0$ is the NLSP, than it decays into \widetilde{G}_{γ} and as it is produced in pair, one can detect 2 energetic photons + missing ET: apply ET (γ) >20 GeV, ET > 40 GeV

2 observed candidates, 3.7±0.6 expected: $m(\tilde{\chi}_{1}^{0}) > 108 \text{ GeV} (95\% \text{ CL})$ $m(\hat{\chi}\pm) > 195 \text{ GeV} (95\%\text{CL})$ most precise to date (PRL 94 (2005) 041801)

if stau NLSP and gravitino/goldstino LSP: possibility to have a long stau lifetime \Rightarrow would look like muons, but with nonconsistent invariant mass and speed rely on the timing of $\mu + \mu$ - pair candidates measured in muon sub-detector

Can be extrapolated to stable charginos and allow to infer 95% CL limits: Gaugino-like chargino mass > 174 GeV Higgsino-like chargino mass > 140 GeV (using 390 pb⁻¹)

best limits to date for stable charginos

- B-hadron lifetimes
- Rare B and D decays
- Bs mixing
- Bs lifetime difference

b-hadron lifetimes

(*) Gabbiani et al., PRD 70, 094031 (2004)

					PDG 2004	theory (*)
F	30	(J/Ψ)	220pb ⁻¹ PRL 94, 042001 (2005)	1.473±0.051±0.023 ps	1.536±0.014 ps	
E	3 ⁻ /Bº	(s.l)	440pb ⁻¹ hep-ex/0410052 (PRL)	$1.080 \pm 0.016 \pm 0.014$	1.086 ± 0.017	1.06±0.02
E	Bs	(s.l)	400pb ⁻¹ prelim.2005	1.420±0.043±0.057 ps	1.461±0.057 ps	
		(J/Ψ)	220pb ⁻¹ PRL 94, 042001 (2005)	1.444±0.094±0.020 ps		
E	Bs/B ^o	(J/Ψ)	11 11	0.980±0.074±0.003	0.951±0.038	1.00 ± 0.01
1	۸b	(J/Ψ)	250pb -1 hep-ex/0410054 (PRL)	1.22±0.20±0.04 ps	1.229±0.080 ps	
	∿b/Bo	(J/Ψ)		0.97±0.16±0.03	0.800±0.053	0.86±0.05
F	Зс	(s.l)	210pb -1 prelim.2004	0.45±0.11±0.12 ps	0.46±0.17 ps	
•	1		•	•	. (CDF Run I)	

26

5

FCNC searches :

B/B mixing: 2 physical states, Heavy and Light

- $\Delta m_s / \Delta m_d$ is free from many theoretical uncertainties
- fit data to $P = \frac{1}{2} \Gamma \exp(-\Gamma t) [1 \pm A \cos(\Delta ms t)]$
- but oscillation in Bs system hasn't been observed yet: only limit so far : $\Delta ms < 14.5 \text{ ps}^{-1} (95\% \text{ CL})$ SM fit : $\Delta ms = 20.6 \pm 3.5 \text{ ps}^{-1}$

$$\Delta m = M_{H} - M_{L} \approx 2|M_{12}|$$

$$\Delta \Gamma = \Gamma_{L} - \Gamma_{H} \approx 2|\Gamma_{12}|\cos\phi$$
CP violating phase $\phi = \arg\left(-\frac{M_{12}}{\Gamma_{12}}\right)$

- In SM: constrains Vtd and Vts elements of CKM matrix
- new physics $(\delta \Phi) \rightarrow$ new particles in the box

Bs / Bs mixing

• mixing frequency Δ md measured with high precision at B factories : **0.510** ± **0.005** ps⁻¹, HFAG 2005 (0.456 ± 0.034 ± 0.025 ps⁻¹, D0 prelim.2004)

Bs mixing analysis

• with 450 pb⁻¹: use 680 Bs \rightarrow Ds μ X (Ds \rightarrow $\Phi\pi$, $\Phi\rightarrow$ KK) with Δ L<0.06cm (best σ (t) resolution)

- \bullet opposite side tag with $\mu + sec.vertex$
- check method on $D^{o}\mu X$ and $D^{*}\mu X$ (Δmd)

$\Delta \Gamma_{\rm s} / \Gamma_{\rm s}$ angular analysis

- $B_s \rightarrow J/\psi \Phi$ is a mixture of CP = +1 and CP = -1 states
- three-angle distribution for $B_s \operatorname{decay}(\theta, \varphi, \psi \text{ are muon and } K \text{ angles in } J/\psi \text{ and } \Phi \text{ rest frames})$ $\Gamma[B_s(t) \to J/\psi (\to l^+l^-)\phi(\to K^+K^-)]/d \cos \theta d \varphi d \cos \psi = \Gamma(\theta, \varphi, \psi, t)$
- Integrate over φ, ψ and simultaneously fit m(Bs), θ , and $\Delta L(Bs)$

Daniel Bloch / IReS-Strasbourg

- Most analyses are already more precise than at Run I, B physics is new for DØ and is performing quite well, one explores SUSY mass limits higher than at LEP
- All analyses will benefit from increased statistics: at present 200-500 pb⁻¹ have been studied, 680 pb⁻¹ are already on tapes, expect ~ 2 fb⁻¹ in 2006, ~ 4 fb⁻¹ in 2007, ~ 8 fb⁻¹ in 2009
- But for many topics, the systematics have already to be reduced: jet energy calibration (affects almost everything), but higher statistics will help as systematics rely also on real data
- Identification efficiencies can still improve (lepton-id, b-tagging)
- 2006 upgrade:
 - new silicon tracker layer 0 : further improvement in b-tagging
 - proposal for dedicated 50Hz data taking rate for B physics

a very rich physics program expected in the coming years !

BACKUP

Daniel Bloch / IReS-Strasbourg

TEV4LHC, CERN, April 28, 2005

