SUSY Higgs Searches: Tevatron 4 LHC ?

Sven Heinemeyer, CERN

CERN, 04/2005

based on collaboration with M. Carena, C. Wagner and G. Weiglein

1. The ideas

- 2. Holes in the CPX scenario
- 3. Benchmarks for heavy Higgses
- 4. Conclusions

Sven Heinemeyer, Tev4LHC workshop, 29.04.2005

1. The ideas

How can the Tevatron help the LHC (SUSY, Higgs, ...)?

⇒ covering/excluding SUSY parameter space

Ideas:

- 1. Covering SUSY parameters that are complicated for the LHC
 - \rightarrow holes (uncovered by LEP) in the m_{h_1} -tan β plane for small values of m_{h_1}
- 2. Define benchmarks that include the Tevatron search channels \Rightarrow LHC can build on existing Tevatron searches and analyses

2. Holes in the CPX scenario

MSSM with complex phases:

$$H_{1} = \begin{pmatrix} H_{1}^{1} \\ H_{1}^{2} \end{pmatrix} = \begin{pmatrix} v_{1} + (\phi_{1} + i\chi_{1})/\sqrt{2} \\ \phi_{1}^{-} \end{pmatrix}$$

$$H_{2} = \begin{pmatrix} H_{2}^{1} \\ H_{2}^{2} \end{pmatrix} = e^{i\xi} \begin{pmatrix} \phi_{2}^{+} \\ v_{2} + (\phi_{2} + i\chi_{2})/\sqrt{2} \end{pmatrix}$$

$$V = m_{1}^{2}H_{1}\bar{H}_{1} + m_{2}^{2}H_{2}\bar{H}_{2} - m_{12}^{2}(\epsilon_{ab}H_{1}^{a}H_{2}^{b} + \text{h.c.})$$

$$+ \underbrace{\frac{g'^{2} + g^{2}}{8}}_{8}(H_{1}\bar{H}_{1} - H_{2}\bar{H}_{2})^{2} + \underbrace{\frac{g^{2}}{2}}_{2}|H_{1}\bar{H}_{2}|^{2}$$
gauge couplings, in contrast to SM

physical states (tree-level): h^0, H^0, A^0, H^{\pm}

 $\mathcal{CP}\text{-even}$ and $\mathcal{CP}\text{-odd}$ fields can mix

$$(A, H, h) \to (h_3, h_2, h_1)$$
 with $m_{h_3} > m_{h_2} > m_{h_1}$

What is the problem?

CPX scenario:

 \rightarrow emphasize "possible" large effects:

[M. Carena, J. Ellis, A. Pilaftsis,

C. Wagner '01]

$$\begin{split} M_{\text{SUSY}} &= 500 \text{ GeV}, \ |A_t| = 1 \text{ TeV}, \\ A_b &= A_\tau = A_t, \\ M_2 &= 500 \text{ GeV}, \ |m_{\tilde{g}}| = 1 \text{ TeV}, \\ \mu &= 2 \text{ TeV} \\ \Phi &= \Phi_{A_{t,b,\tau}} = \Phi_{m_{\tilde{g}}} \\ M_{H^{\pm}}, \tan\beta \text{ varied} \end{split}$$

LEP search left uncovered holes with low $m_{h_1} \Rightarrow \text{difficult for LHC}$

Q: Can the Tevatron cover these holes?

• $V^* \rightarrow Vh_1$

 \Rightarrow no LEP discovery since VVh_1 coupling small

• $V^* \rightarrow Vh_2$

⇒ either VVh_2 small or m_{h_2} too large Tevatron can extend LEP reach to $m_{h_2} \leq 130$ GeV Problem: BR $(h_2 \rightarrow h_1h_1)$ large in CPX holes ⇒ $h_2 \rightarrow h_1h_1 \rightarrow \tau^+\tau^- \tau^+\tau^-$ low rate! ⇒ Tevatron Luminosity not high enough for this channel (→ no analysis for $h_1h_1 \rightarrow b\bar{b} \tau^+\tau^-$ yet)

• $Z^* \rightarrow h_2 h_1$

 \Rightarrow too small rate in CPX holes (otherwise excluded by LEP)

Possible channels (cont.):

• $W^* \to H^{\pm} h_1$

CPX holes \Rightarrow relatively large $W^{\pm}H^{\mp}h_1$ coupling \Rightarrow in principle interesting channel LHC analysis [*D. Ghosh, S. Moretti '04*] \Rightarrow 15 events for 10 fb⁻¹ \Rightarrow not much hope for Tevatron

• $p\bar{p} \to t\bar{t} X \to W^+ b H^-\bar{b} X$

coupling: $H^{\pm}tb \sim (m_t/\tan\beta + m_b\tan\beta)$ \Rightarrow coupling weakest at intermediate $\tan\beta$ values \Rightarrow coupling weakest exactly where the CPX holes are

A: Tevatron cannot do much for the LHC

A': However, one more thing ...

A': However, one more thing ...

Compare m_t dependence:

What the Tevatron can possibly do: \Rightarrow measure a small and accurate m_t value

Sven Heinemeyer, Tev4LHC workshop, 29.04.2005

A": However, another thing ...

LEP analysis:

Two codes: FeynHiggs2.0 and CPH conservative approach (very good!):

CPX point not excluded

\Leftrightarrow

(point not excluded by FeynHiggs) or (point not excluded by CPH)

CPX holes "rely" heavily on large $BR(h_2 \rightarrow h_1h_1)$

CPX holes: CPH has larger $BR(h_2 \rightarrow h_1h_1)$ than FeynHiggs

 \Rightarrow reasons for differences under investigation

 \Rightarrow possibly higher-order effects that are not under control

 $(\Rightarrow LEP \text{ analysis is currently the best strategy!})$

CPX @ LEP with FeynHiggs only: \Rightarrow no holes

- \Rightarrow reasons for differences under investigation
- \Rightarrow possibly higher-order effects that are not under control

A"': However, yet another thing ...

LEP analysis:

holes not excluded at the 95% C.L. holes are excluded at the \sim 75% C.L.

 \Rightarrow "combined" LEP/Tevatron analysis ??

Idea:

Define benchmarks that include the Tevatron search channels \Rightarrow LHC can build on existing Tevatron searches and analyses

Benchmarks such that minimum/maximum region of SUSY parameter space is excluded \Rightarrow full potential of search channels investigated

Channels:

(A)
$$b\bar{b}\phi$$
, $\phi \to b\bar{b}/\tau^+\tau^-$, $\phi = h, H, A$
(B) $p\bar{p} \to t\bar{t}X \to W^+b H^-\bar{b}X$
(C) $gg \to h$?

3. (A): $b\bar{b}\phi$, $\phi \rightarrow b\bar{b}/\tau^+\tau^-$, $\phi = h, H, A$

Latest result from D0 [hep-ex/0504018]

Where do the large differences in the "no mixing" and "max mixing" scenario come from?

 $\Rightarrow \sigma \times BR$ larger in m_h^{max} due to Δm_b effects

$$y_b \sim \frac{m_b}{1 + \Delta m_b}, \quad \Delta m_b \sim \alpha_s \tan \beta \, \mu \, m_{\tilde{g}} \, I(m_{\tilde{b}_1}, m_{\tilde{b}_2}, m_{\tilde{g}})$$

Sven Heinemeyer, Tev4LHC workshop, 29.04.2005

New benchmark definition with $\mu > 0$ (due to $(g-2)_{\mu}$):

[M. Carena, S.H., C. Wagner, G. Weiglein '02]

sign of μ reversed $\Rightarrow \Delta m_b > 0 \Rightarrow y_b$ smaller $\Rightarrow \sigma \times BR$ smaller $\Rightarrow t/\tilde{t}$ sector plays a minor role

Effects on $\tan \beta$ exclusion region:

 \Rightarrow large freedom to tune best/worst scenario

Two other "random" scenarios:

 \Rightarrow large effects via $\Delta m_b \Rightarrow t/\tilde{t}$ sector plays a minor role

Effects on $\tan \beta$ exclusion region:

 \Rightarrow large freedom to tune best/worst scenario

Effects on $\tan \beta$ exclusion region:

 \Rightarrow large freedom to tune best/worst scenario

\Rightarrow large freedom to tune best/worst scenario

The question is: what are you willing to accept?

– large disagreement with $(g-2)_{\mu}$?

. . .

- (nearly) non-perturbative parameters: $\Delta m_b pprox -1$
- sfermion masses (very) close to experimental limit?
 (or possibly beyond experimental limits in the future?)

3. (B) $p\bar{p} \rightarrow t\bar{t}X \rightarrow W^+b H^-\bar{b}X$

$$H^{\pm}tb$$
 coupling: $\sim y_t/\tan\beta + y_b\tan\beta$

$$y_b \sim \frac{m_b}{1 + \Delta m_b}, \quad \Delta m_b \sim \alpha_s \tan \beta \, \mu \, m_{\tilde{g}} \, I(m_{\tilde{b}_1}, m_{\tilde{b}_2}, m_{\tilde{g}})$$

 \Rightarrow larger variations possible via Δm_b for large $\tan\beta$

 \rightarrow look at same scenarios as before

 $\Gamma(t \to H^+ b) \sim (H^\pm t b)^2$

 \Rightarrow variation at large $\tan\beta$

 \Rightarrow variation in $\tan\beta$ exclusion

What are you willing to accept?

\rightarrow gluophobic scenario

\rightarrow gluophil scenario?

4. Conclusinos

- Idea I: Tevatron can cover "complicated" MSSM parameters
 - \rightarrow holes in CPX scenario with very light Higgs
 - \Rightarrow very difficult for the Tevatron ... $W^* \rightarrow H^{\pm}h_1$??

(other issues: m_t dependence, higher-order uncertainties, LEP/Tevatron analysis . . .)

- Idea II: Define benchmarks \Rightarrow continuous Tevatron/LHC search
 - → "optimistic" /" pessimistic" scenarios to show possible variation in exclusion bounds
 - \rightarrow focus on Tevatron search channels
 - \Rightarrow largest variation via $\Delta m_b \sim \alpha_s \mu \tan \beta$
 - \Rightarrow large variation in exclusion bounds
 - $\rightarrow b\overline{b}\phi \rightarrow b\overline{b} \ b\overline{b}$ (also: $t \rightarrow H^+b$, $gg \rightarrow h$, ...)