

New Results from CDF ...plus what I can sneak in from the TeV4LHC workshop J. Huston Michigan State University

...thanks to Franco Bedeschi, Florencia Canelli, Giulia Manca, Mario Martinez, Dave Waters, Un-Ki Yang for letting me steal their slides

Angels and Demons

- If I appear to be a bit groggy, it's because I just arrived this morning
 - after giving my final yesterday
- Of course, this wouldn't have been a problem if Michelangelo had sent the X-33 like I had asked

Does CERN own an X-33 spaceplane? Find out what's fact and what's fiction in Dan Brown's "Angels and Demons"...

Tevatron in Run II

36 bunches (396 ns crossing time)

electron cooling this summer $\rightarrow 40\%$ increase in luminosity

CDF in Run II

New in 2005 (during fall 2004 shutdown)

 New scintillatorbased central preradiator

Installation configuration

Tevatron Performance

- Theme of this year's Les Houches workshop
 - "From 800 pb⁻¹ at the Tevatron to 30 fb⁻¹ at the LHC"
- ...is accurate, at least for the first part

Shutdown: most blessed analyses based on ~400 pb⁻¹ before shutdown

Tevatron Performance

ultimately 4-9 fb⁻¹

W/Z cross sections at the Tevatron

•good agreement with NNLO predictions
•error dominated by luminosity error (6%)
•2% systematics (pdf's (acceptance), efficiency) without L error

W \rightarrow l ν as luminosity monitor

- Current method based on σ_{inel} (ppbar)=
 61.7±2.4 mb @ 1.96 TeV (4%)
- Can we do better using the cross section for $W{\rightarrow}l\nu$ measurement?
- Recent paper by Frixione and Mangano (hep-ph/0405130) investigate contributions of uncertainties in acceptance calculation to the W →lv x-sec measurement (currently ~2%)
- Tevatron and LHC would benefit from experimental and theoretical work

...TeV4LHC project

Validity of NLO DGLAP at Tevatron and LHC

- Is there a *tension* between HERA and Tevatron data requiring NNLO DGLAP to resolve?
 - MRST study: hepph/0308087
 - W cross section at LHC drops 20% when data below x=.005 are removed from fit
 - implications for use of W σ as luminosity benchmark
- Recent CTEQ study indicates as more severe cuts are made in x and Q² in global analysis, uncertainty on W cross section at the LHC increases but central value remains relatively constant
 - hep-ph/0502080
 - accepted by JHEP

W/Z cross sections

R(W/Z) and Γ

W charge asymmetry

$$A(y_w) = \frac{d \sigma(W^+)/dy_w - d \sigma(W^-)/dy_w}{d \sigma(W^+)/dy_w + d \sigma(W^-)/dy_w}$$

$$A(y_w) \approx \frac{u(x_1)d(x_2) - d(x_1)u(x_2)}{u(x_1)d(x_2) + d(x_1)u(x_2)}$$

Cannot reconstruct y_w directly
cannot reconstruct y_w directly
measure charged lepton only

$$A(\eta_l) = \frac{d \sigma(l^+)/d \eta_l - d \sigma(l^-)/d \eta_l}{d \sigma(l^+)/d \eta_l + d \sigma(l^-)/d \eta_l}$$

$$A(\eta_l) = \frac{d \sigma(l^+)/d \eta_l}{d \sigma(l^+)/d \eta_l + d \sigma(l^-)/d \eta_l}$$

W asymmetry

CTEQ6.1M with RESBOS at NLO

CTEQ6.1M with RESBOS at NLO

PDF CTEQ6 30201-30240

Diphotons in Run II

- small q_T, large Δφ: effects of gluon resummation evident
- large q_T, small Δφ: NLO fragmentation important

Jet Energy Scale: New

Inclusive Jet Production

 Nowhere is the increase in center-ofmass energy more appreciated

CDF Run 2 Preliminary

Jet algorithms

- Run II analyses in CDF use both cone and k_⊤ jet algorithm
 - CDF has used both JetClu (Run I) and midpoint (Run II) cone algorithms

midpoint improves perturbative behavior

FIG. 1: Two partons in two cones or in one cone with a (soft) seed present.

- subtle issues regarding use of cone algorithms at hadron colliders
 - see hep-ph/0111434, S. Ellis, J. Huston, M. Tonnesmann, On Building Better Cone Jet Algorithms
 - under study in both Tevatron and LHC experiments as part of TeV4LHC workshop (and Les Houches)

Cone results

...working on blessing midpoint results (corrected to parton level) with ~380 pb⁻¹

Data dominated by jet energy scale NLO error mainly from gluon at high x

No hadronization corrections applied to NLO prediction \rightarrow relevant @ low E_T^{jet}

•Using Run I cone algorithm & unfolding $_{/E_{T}^{jet}}$ range increased by ~150 GeV

•Comparison with pQCD NLO (JETRAD) (over almost nine orders of magnitude)

k_T jet cross section results

Interesting event to study algorithm differences

...project in TeV4LHC to examine what different experimental algorithms (CDF, D0, ATLAS CMS) do with *interesting* events

$QCD \neq SM$

- In a recent paper (hepph/0503152), Stefano Moretti and Douglas Ross have shown large 1-loop weak corrections to the inclusive jet cross section at the Tevatron
- Up to 20% effect at the Tevatron
 - impact on pdf's and high x gluon?
- Effect goes as α_wlog²(E_T²/M_Z²)
 - may be substantially larger for high E_T jets at the LHC
- Other (unsuspected) areas where weak corrections are important?

FIG. 1. The effects of the $\mathcal{O}(\alpha_{\rm S}^2 \alpha_{\rm W})$ corrections relative to the LO results for the case of Run 1(Run 2) in the presence of PDFs preceding(following) the gluon re-parameterisation at medium/large Bjorken x, CTEQ3L(CTEQ6L1) [26]([21]). They are plotted as function of E_T for a choice of μ . The cut $0.1 < |\eta| < 0.7$ has been enforced, alongside the standard jet cone requirement $\Delta R > 0.7$.

Importance of underlying event

 Have to subtract underlying event from hard scatter in order to compare jet cross sections to parton-level calculations

...a Tev4LHC project

 Σp_T in max region increases as jet E_T increases Σp_T in min region stays flat, at level similar to min bias

Jet #2 Direction

TransMIN

Jet #1 Direction

Tone

TransM AXE

need inclusive jet production in MCatNLO->a TeV4LHC/Les Houches project

Jet Fragmentation

- Jet shape dictated by multi-gluon emission form primary parton
- Test of parton shower models and their implementations
- Sensitive to quark/gluon final state mixture and run of strong coupling
- Sensitive to underlying event structure in the final state

Jet Fragmentation

B-hadron production

Total inclusive single b-hadron (H_b) cross section $\sigma(p\bar{p} \rightarrow H_b X, |y| < 0.6) = 17.6 \pm 0.4(stat)^{+2.5}_{-2.3}(syst) \ \mu b$

considering $Br(H_b \rightarrow J/\psi X) = 1.16\pm0.10\%$ and $Br(J/\psi \rightarrow \mu\mu) = 5.88\pm0.10\%$

b-jet production

use displaced tracks inside jet to tag heavy flavor; use secondary vertex mass to extract b fraction.

b-jet cross section as function of jet p_T (Range 38-400 GeV/c)

Systematic Error	$IowP_{T}$	high \mathbf{P}_T
Luminosity	6%	6%
Absolute Energy Scale	15-20%	40%
Jet energy resolution	6%	6%
B-tagging efficiency	10%	15%
B-tagged jets fraction	10-15%	40%
Unfolding	8%	8%

No comparison with NLO yet Data/Pythia Tune A ~ 1.4 in agreement with expectations

W+bb/W+j/jj

Use secondary vertex mass to tag heavy flavor

 Observed rate W+bb)/W+j,jj = 0.0072±0.0024(stat.)±0.0022(syst.)

At NLO, ratio is stable across a wide range of scales.

For a p_T cut of 15 GeV and $\mu \sim M_W$, we have:

$$\left[\frac{\sigma(Wb\bar{b})}{\sigma(W+2 \text{ jets})}\right]_{LO} = 1.16\%, \qquad \left[\frac{\sigma(Wb\bar{b})}{\sigma(W+2 \text{ jets})}\right]_{NLO} = 1.23\%$$

J. Campbell and J. Huston, hep-ph/0405276 [PRD70 094021 (2004)]

Understanding 'Not-Top'

Steve Mrenna:

Understanding W+Jets is Critically Important

 Signature Wbb + X is common to unconfirmed Standard Model processes and many new physics processes

 $X \Rightarrow$ many boxes

 we "know" that Standard Model top is there, thus we can study Not-Top

 $\mathsf{Top} \equiv \mathsf{Data} - \mathsf{Not}\mathsf{-}\mathsf{Top}$

- Claim: understanding Not-Top is more important than understanding Top itself
 - Not-Top challenges our tools
 - Better tools = more challenging questions
- As JES uncertainty is reduced, understanding of Not-Top sets δm_t

A lot of work underway at CDF and in TeV4LHC on 'Not-Top'.

Not-Top: Higgs searches

Higgs searches

Combined Results

This is difficult region at LHC

Event signatures

Top quark decays to W and b at a rate of ~ 100% $Br(t \rightarrow W^+b) \simeq 1$

 \Rightarrow 6 jets (including 2 *b*-jets)

Cross section results

- Variety of analyses
 - counting experiments
 - kinematic fits/neural networks
 - w/wo b-tagging (silicon available for most of data)

 All results consistent with each other and with theory prediction

CDF Run 2 Preliminary

Top Mass

Results as of 2004

Run 2 template method

- Lepton + jets final state
 - E_T>15 GeV (8 GeV on 4th jet), |η|<2.0
 - 318 pb⁻¹ data sample
- χ^2 mass fitter
 - find top mass that fits event best with 2 constraints (W mass, top mass)
- Likelihood fit
 - best signal + background templates to fit data with constraint on background

Top Mass Results

- World's best top mass measurement has been made in the lepton + jets channel at CDF
 - world average will drop slightly as will predictions for Higgs mass
- Systematics due to jet energy scale and background shape to improve further

Supersymmetry

Wide range of signatures

- look for SUSY-specific signatures or excess in SM ones
- RP: large missing E_T from LSP's
- isolated leptons

diphotons

multijets

very small cross sections

detector response has to be well-understood; detectors have to be highly efficient

s

Events/2.0 (GeVc²)

1

A

In <u>mSUGRA</u>: 3 leptons+₽/ → σxBR~0.1 pb SELECTION:

- -2 <u>electrons</u>+ ℓ (ℓ =e, μ) | η |<1
- large 🗸
- 15<M_{II}<76, >106 GeV/c²
- |∆¢|< 160°
- Njets(20 GeV) <2

ee+l (SUSY signal)	0,5
TOT SM Expected	0,16 <u>+</u> 0,07
OBSERVED	0

VERY FIRST LOOK AT THE DATA!! Still to do:

- improve acceptance adding the plug
- add the other channels (almost ready)

Asking for the third lepton:

B_s mixing

Impact on world average sensitivity

Combined scan results

- ◆ 7.9 ps⁻¹ 95% CL limit
- sensitivity: 8.4 ps⁻¹
- additional improvements could reduce statistical error by up to a factor of 2 with the same dataset
- Effect on world average:
 - limit: 14.5->14.5 ps⁻¹
 - sensitivity: 18.2->18.6 ps⁻¹

Summary

Tevatron and CDF both working well
~800 pb⁻¹ down and > 8 fb⁻¹ to go

Websites and future meetings

- TeV4LHC: conferences.fnal.gov/tev4lhc/
- QCD
 - www.pa.msu.edu/~huston/ tev4lhc/wg.htm
 - see also www.pa.msu.edu/~huston/ tevqcdwg/wg.htm
- TopEW
 - www.hep.anl.gov/tait/tev4l hc/topew.html
- Higgs
 - wwwclued0.fnal.gov/~iashvili/T eV4LHC_higgs/higgs.html
- Landscape

 Final meeting at Fermilab in the fall of 2005

 Four listserver mailing groups have been set up:

tev4lhc-qcd tev4lhc-higgs tev4lhc-topew tev4lhc-landscape

- If you would like to subscribe to the working groups, here are the instructions:
 - To subscribe to a mailing list called MYLIST

1. Send an e-mail message to listserv@fnal.gov

2. Leave the subject line blank

3. Type "SUBSCRIBE MYLIST FIRSTNAME LASTNAME" (without the quotation marks) in the body of your message.

See (some of you) at Les Houches 2005

Physics at TeV Colliders

- From 800 pb⁻¹ at the Tevatron to 30 fb⁻¹ at the LHC
- May 2-20
 - right after CERN meeting of TeV4LHC
- 2 main working groups
 - SM and Higgs
 - BSM and Higgs modeling

