Top quark studies at CMS

Andrea Giammanco – SNS & INFN Pisa

- Advantages of LHC
- QCD production (ttbar pairs)
- EW production (single top)
- What can Tevatron do for LHC?

LHC is a top factory

σ_{tt}(th)=825±150 pb NNLO-NNNLL: Kidonakis, Vogt, PRD 68 (03) 114014

This means 8 millions tt pairs/year (1 pair/second) at low luminosity!

Advantage of LHC: S/B

	1.96 TeV	14 TeV	
ttbar pairs	6.70 ^{+0.71} -0.88 pb	825±150 pb	(x120)
Single top (s-channel)	0.75±0.12 pb	10±1 pb	(x10)
Single top (t-channel)	1.47±0.22 pb	245±17 pb	(x170)
Single top (Wt channel)	0.15±0.04 pb	60±10 pb	(x400)
Wjj (*)	~1200 pb	~7500 pb	(x6)
bb+other jets (*)	~2.4x10⁵ pb	~5x10⁵ pb	(x2)

(*) Belyaev, Boos, and Dudko [hep-ph/9806332]

Top mass

(Note: mostly based on fast simulation studies)

Top mass at CMS

Semileptonic channel:

CMS note 2001/001

- 0.2% efficiency
- Total background 5%
- Mass extracted from jjb system
- (-> large error from jet scale uncertainty)
- Stat. error: ±0.25 GeV
- Error from P_t(t) spectrum: ±0.4 GeV
- Jet scale: ∆E_j/E_j~1% -> ∆M~±0.3 GeV

$\Delta m_t \approx \pm$ 1-2 GeV

<u>Caveat</u>: this result has been obtained with fast simulation. Full simulation analyses (also with higher degree of sofistication) are under way, also for fully leptonic & fully hadronic channels.

Top mass at CMS: t->J/ψ

CMS note 1999/065

Hard lepton + J/ψ :

1000 events/year @ L=10³⁴

 $J/\psi \rightarrow \mu\mu$ easy to identify. $M_{IJ/\psi}$ has a dependence on M_t .

- Independent from jet scale
- Unfeasible at low luminosity
- Promising at high luminosity
- Among main systematics: b fragmentation

$\Delta m_t \approx \pm 1 \text{ GeV}$

Currently being reproduced with full simulation and $J/\psi \rightarrow \mu\mu + J/\psi \rightarrow ee$

Spin correlations

Since $\tau_{decay} < \tau_{hadr}$, decay products retain "memory" of the top spin (not washed out by hadronization) $\mathcal{A} = \frac{N(t_L \bar{t}_L + t_R \bar{t}_R) - N(t_L \bar{t}_R + t_R \bar{t}_L)}{N(t_L \bar{t}_L + t_R \bar{t}_R) + N(t_L \bar{t}_R + t_R \bar{t}_L)} \qquad \frac{1}{N} \frac{d^2 N}{d\cos\theta^*_{\ell^+} d\cos\theta^*_{\ell^-}} = \frac{1}{4} (1 - \mathcal{A}\cos\theta^*_{\ell^+}\cos\theta^*_{\ell^-})$ Discriminates between qq->tt (A = -0.469) and gg->tt (A = +0.431) MC without spin corr. MC with spin corr. PYTHIA 5.7 + M.E. Flesch 87%gg+13%aa 1500 N(events) / (0.4 • 0.4) 1600 1400 1400 1300 CMS: 1200 1200 $\Delta A/A = \pm 11\%(st) \pm 9\%(sys)$ (30 fb⁻¹) 1100 1000 1000 **ATLAS:** 1 $A/A = \pm 7\%(st) \pm 19\%(sys)$ (30 fb⁻¹) CO5 ⊙ 0.5 0.5 COS ⊖∗ 0.5 0 0 -0.5 CO5 @. -0.5 -0.5 -0.5 **>5** *σ* from 0 @ 30 fb⁻¹

W polarization in top decay

 \Rightarrow uncertainty on the fraction of long.pol. W's: \pm 0.023 (stat) \pm 0.022 (sys)

Single top

- Never observed so far
- Directly related to |V_{tb}|

(not a $V_{tb}/\Sigma V_{ti}$ ratio -> no assumption on the number of quark generations)

- Sensitivity to new physics: FCNC (t-ch.), new gauge bosons (sch.), H[±]->tb ...
- Background to tt and several searches (ttH, WH->lvbb, ...)
- Possibility to study top properties (mass, polarization, charge) with very little reconstruction ambiguities

Single top: "how to"

General strategy (both s/t-ch.):

- 1 isolated lepton
- •2 high E_t jets
- •at least 1 tagged b-jet
- missing E_t
- I+MET: M_T compatible with W
- H_t (scalar sum of all E_t's)
- •M(Ivb) in a window around M_t
- s/t-channel separation:
- •2(b-t-b)/1 tagged b-jets
- •0/1 jets in the forward calo
- 2/1 central jets
- angular distance between the reco top and the remaining jet

For MET and H_t, single top lies in the middle between non-top and ttbar bkgs. <u>S-channel</u>: S/B<0.2, main bkgs: ttbar->2l (1 lost), Wbb, tchannel.

<u>T-channel</u> is much easier to select, due to higher cross section and unique topology.

Direct |V_{tb}| extraction

Wt-channel: 50% th. error (range of values in literature)

(ATLAS stat. err.: s-ch. 5.4%, t-ch. 0.7%, Wt 2.8%)

Direct $|V_{tb}|$ extraction: single top / single W

Moreover, in principle, many theoretical errors would disappear by normalising s-channel events over single W events:

(with care in choosing coherent cuts for the two processes, to avoid the reintroduction of the same errors in a subtler way)

Polarization in t-channel

Standard Model consistency check: single tops <u>have</u> to be polarized
Many new physics scenarios give |g_R|>0

(dΓ/Γ)/d(cos θ)=½(1+Acos θ) A(I)=+1, A(b)=-0.40 , A(v)=-0.33 θ: lepton/chirality axis angle

In the ultrarelativistic limit, chirality~elicity. Not the top case!

Mahlon (hep-ph/9811219): in the top r.f., spin axis is always parallel to the "down" quark direction.

In t-channel its better approximation is the recoil jet axis.

ATLAS: ±1.6% precision on top polarization @10 fb⁻¹

Single top and SUSY

Reccaria, Renard, Verzegnassi (hep-ph/0410089) NLL computation of single top production in a "light" SUSY scenario (350-400 GeV).

Main consideration: the only relevant SUSY parameter is *tan*β

Effects: >10% in any channel, in particular in associated production (bg->tY, Y=W,H). Strong dependence on $tan\beta$.

bg->tW[±]:

- cosθ asimmetry
- no *tan*β dependence

bg->tH[±]:

- no cosθ asimmetry
- tanβ dependence

Top charge

• Is the discovered "top quark" **a charge 4/3 pseudo**quark?

D. Chang, W.F. Chang, E. Ma, Physical Review D 59 091503

• Global EW fit is consistent with this hypothesis, given a "true top" mass ~230 GeV

• In Run I, CDF and D0 were not able to distinguish among (W+b)(W-bbar) and (W-b)(W+bbar): angular correlations + jet charge determination is a very difficult task.

The two competing hypotheses on $|Q_t|$ may be tested from:

- " QED coupling: rate of $tt\gamma$ and t->bW γ evts
- " estimation of b-jet charge

Feasible with 10 fb⁻¹

Q_t from single top, t-channel

" Cross section at LHC is not that small

(250 pb, against 825 pb for ttbar)

" Very characteristic topology allows selection of high purity samples

"Top may be reconstructed with very little ambiguity (usually only 1 b in acceptance)

"Determination of b flavour (b/b) is a determination of |Q(t)|(assuming |Q(b)|=1/3)

ATLAS result: b/b separation already possible after 1 year at LHC

What can Tevatron do for LHC?

- Very similar environment: ideal to test analysis strategies and understand similar systematics (e.g. Underlying Event)
- W+jets, in particular Wbb(X), Wcc(X), Wc(X), are significant backgrounds for Top analyses at both accelerators; different MC models give different kinematics => sizeable differences in efficiency estimates. Improvement by tuning generators to Tevatron data?
- PDFs for LHC are currently extrapolated from a global fit heavily relying on HERA ep data.
- But Tevatron pp data contribute with a richer menu (e.g. constraints to gluon PDF), see next slides.
- Impression from the outside(*): Currently relatively few studies at CDF+D0 to constrain PDFs. Is it true?

(*) I.e. by watching public results: http://www-cdf.fnal.gov/physics/physics.html http://www-d0.fnal.gov/Run2Physics/WWW/

Parton Distribution Functions

How to probe PDFs at hadron colliders

	Process:		Partons involved:			
	Di-jets		Quarks and gluons			
	(b/c/light-)jet + γ/Z		(b/c/light) quarks and gluons			
	(b/c/light-)jet + W		(c/s/light) quarks and gluons			
	Single W's and Z's		Quarks			
	Drell-Yan		Quarks			
q	g	g \sim		—— q	g ~~~q	l
q	g	g \sim		—— q	qq	g/Z/γ
q	W I	q	Ζ/γ		g ~~Q	,,
q,	\sim	q /	•		QV	V

What is relative uncertainty for W/Z/Higgs Production

 $q_T \ [GeV]$

Conclusions

- LHC will be a top factory
- This will allow precision measurements in top physics (e.g. $\Delta M_t \sim 1$ GeV looks feasible)
- Measurements will be limited by systematics
- Analyses under way in CMS for ttbar and single top production (Physics-TDR completed at the end of 2005)
- Tevatron can be of big help for LHC physics by studying common sources of uncertainty, e.g. models for Underlying Event, W+jets and PDFs

Backup slides

Why do we like Top so much?

- It exists (but is the least known quark)
- Radiative corrections are proportional to M_t²
- M_t>M_w : this means that the W is not virtual
- Γ proportional to G_F , not G_F^2 . Result: $\tau_{decay} < \tau_{hadr}$

(τ_{decay} =1/ Γ (~1.5 GeV), τ_{hadr} ~1/ Λ_{QCD} (~0.2 GeV))

- So, even "standard" top physics is unusual!
- For example, decay products retain information about the quark (e.g. polarization)
- New particles may decay into top
- Background for a lot of "new physics"
- Useful for detector calibration

Underlying Event

The "transverse" region is defined by $60^{\circ} < |\phi| < 120^{\circ}$ and $|\eta| < 1$.

The "transverse" region is perpendicular to the plane of the hard 2-to-2 scattering and is very sensitive to the "underlying event" component of the QCD Monte-Carlo models.

PDF global fit inputs

Spin flow for single top

momentum

spin ½

Angular distrib. t->W->I

b

b is relativistic and left-handed. W can be left-handed or longitudinal.

In W's r.f.: final state of +1 elicity from (1,0) or (1,-1).

$$d_{1,0}^{1} = \frac{-\sin\theta^{*}}{\sqrt{2}}, d_{1,-1}^{1} = \frac{1.-\cos\theta^{*}}{2}$$

$$\frac{dN}{d\cos\theta^*} = \frac{3}{4(m_t^2 + 2M_W^2)} \Big[m_t^2 \sin^2\theta^* + M_W^2 (1 - \cos\theta^*)^2 \Big]$$

Single top at Tevatron

t-channel: σ=1.98±0.24 pb

M(Ivb) discrimina top/non top

Run II (162 pb⁻¹):

- s+t channels: σ<13.7 pb @95% CL</p>
- t-channel only: σ<8.5 pb @95% CL</p>

Jet charge method

b/b separation feasible already after first years at LHC

Top mass at LHC

Errors per year, per channel, per experiment:

Error:	qqbbl∨	qqbbl∨ (high p _⊤)	bblvlv	σ_{tt}	qqbbl∨ (+J/ψ)
statistic	0.10	0.25	0.90?	<0.05	<1.0
light jet E scale	0.20	1.2?	-	-	-
b-jet E scale	0.60	0.60	0.60	-	-
ISR/FSR	1.5?	0.2?	1.0	?	0.30?
B fragm.	0.25	0.10	0.70	-	0.60
backgrounds	0.15	0.10	0.10?	negl.	0.20
PDF	negl.	negl.	negl.	4.0	0.20
Total	<2.0?	<2.0?	<2.0?	<4.0?	<1.3?

Note: systematics are correlated

Studies by ATLAS

 $\Delta m_t < 1$ GeV looks realistic.