Politecnico di Bari and Sezione INFN
Bari, Italy
Case Western Reserve University
Cleveland, Ohio,USA
Institut für Luft- und Kältetechnik,
Dresden, Germany
CERN, Geneva, Switzerland
Università di Genova and Sezione INFN
Genova, Italy
University of Helsinki and HIP,
Helsinki, Finland
Academy of Sciences,
Praha, Czech Republic
Penn State University
University Park, USA
Brunel University, Uxbridge, UK

TOTEM TDR is fully approved by the LHCC and the Research Board

THE TOTEM Experiment

V. Avati

on behalf of the
TOTEM Collaboration
http://www.cern.ch/totem/

TEV4LHC Workshop
CERN, 28 April 2005

TOTEM Physics

- Total p-p cross section at 14 TeV with a precision of 1% (Optical Theorem , Luminosity independent method)
- Elastic p-p scattering cross-section $\mathrm{d} \sigma / \mathrm{dt}$ in the range $10^{-3} \mathrm{GeV}^{2}<-t<10 \mathrm{GeV}^{2}$
- Particle and energy flow in the forward direction
- Measurement of leading particles
- Diffractive phenomena with high cross-sections
- Absolute luminosity measurement and calibration of CMS luminosity monitors

Different running scenarios $\left(\beta^{\star}=1540,170,18,0.5 \mathrm{~m}\right)$

TMTMN Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

Total p-p Cross-Section

- Current models predict for 14 TeV: 90-130 mb
- Aim of TOTEM: ~ 1% accuracy
- Luminosity independent method:

$$
\begin{gathered}
\begin{array}{c}
\text { Optical } \\
\text { Theorem }
\end{array} \quad \mathrm{L} \sigma_{\text {tot }}^{2}=\frac{16 \pi}{1+\rho^{2}} \times\left.\frac{d N}{d t}\right|_{t=0} \\
\mathrm{~L} \sigma_{\text {tot }}=N_{\text {elastic }}+N_{\text {inelastic }} \\
\sqrt{1} \\
\sigma_{\text {tot }}=\frac{16 \pi}{1+\rho^{2}} \times \frac{\left.(d N / d t)\right|_{t=0}}{N_{e l}+N_{\text {inel }}}
\end{gathered}
$$

COMPETE Collaboration:

COMPETE Collaboration fits all available hadronic data and predicts at LHC:

$$
\sigma_{\text {tot }}=111.5 \pm 1.2_{-2.1}^{+4.1} \mathrm{mb}
$$

Measurement of $\sigma_{\text {tot }}$

Luminosity-independent measurement of the total cross-section using the Optical Theorem:

$$
\left.\begin{array}{l}
\mathcal{L} \sigma_{\text {tot }}^{2}=\frac{16 \pi}{1+\rho^{2}} \times\left.\frac{d N_{e l}}{d t}\right|_{t=0} \\
\mathcal{L} \sigma_{\text {tot }}=N_{e l}+N_{\text {inel }}
\end{array}\right\} \Rightarrow \sigma_{\text {tot }}=\frac{16 \pi}{1+\rho^{2}} \times \frac{\left.\left(d N_{e l} / d t\right)\right|_{t=0}}{N_{e l}+N_{\text {inel }}}
$$

- Measure the elastic and inelastic rate with a precision better than 1%
- Extrapolate the elastic cross-section to $\dagger=0$

Or conversely:
Extract luminosity:

$$
\mathcal{L}=\frac{1+\rho^{2}}{16 \pi} \frac{\left(N_{e l}+N_{\text {inel }}\right)^{2}}{\left.\left(d N_{e l} / d t\right)\right|_{t=0}}
$$

TMTMN Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

Experimental apparatus

TMWN Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

T1 Telescope

5 planes of Cathode Strip Chambers
Measurement of 3 coordinates per plane

TMTMN Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

T2 Telescope $\quad 5.3<m \mid<6.8$

TMTME Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

T2 telescope

10 triple-GEM planes, to cope with high particle fluxes

Resolution: $\sigma_{R} \sim 115 \mu \mathrm{~m} ; \sigma_{\phi} \sim 16 \mathrm{mrad}$

Telescopes performances: provide full inclusive trigger

T1

- LVL1 trigger done with anode wires: pattern optimized to trigger on primary tracks
- Pointing power at LVL1
- Non Single Diffractive
(Minimum bias+double diffr):
Trigger efficiency: 1 arm $>98 \%$ - 2 arms $>88 \%$
- Single diffractive:

Trigger efficiency: 1arm >70\%

T2

- LVL1 trigger done using sectors (5×3 pads)
- NSD:

Trigger efficiency: 1arm >94\%

- Single diffractive:

Trigger efficiency: 1 arm >80

T1+T2 Trigger efficiency \square NSD: 1arm > 99\% - 2arms > 91\% SD: 1 arm> 81\%

V.Avati/TOTEM

Telescopes performances: vertex reconstruction

T1 resolution : $\sigma x=0.36 \mathrm{~mm}$

$$
\sigma y=0.62 \mathrm{~mm}
$$

T2 resolution: $\sigma_{R} \sim 115 \mu \mathrm{~m}$

$$
\sigma_{\phi} \sim 16 \mathrm{mrad}
$$

Reconstructed vertex well inside the beampipe ($\sigma \sim 3 \mathrm{~mm}$) and within $\pm 5 \mathrm{~cm}$ along the beam axis

The primary vertex resolution is sufficient to discriminate beam-beam from beam-gas events

Primary vertex resolution

TMTM Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

Roman Pot station with two units 4 m apart

Roman Pot unit
-Vertical and horizontal pots mounted as close as possible
-BPM fixed to the structure gives precise position of the beam
-Final prototype at the end of 2005
 Roman Pot : installation in the SPS on Aug. 18 ${ }^{\text {th }} 2004$

TOTEM ROMAN POT IN CERN SPSBEAM

Si detectors and read-out inside the Roman Pots (Test Beam 2004)

TMTVM Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

Edgeless Silicon Detectors for the RPs

Active edges: X-ray measurement

Planar technology:
Testbeam: $40 \mu \mathrm{~m}$ dead area

3D-Si Detector: Edge Sensitivity (Test Beam 2003)

With $6 \mu \mathrm{~m} 13 \mathrm{keV}$ X-rays

With high energy particle tracks

Running Scenario

Scenario Physics: low $\|\mathrm{t}\|$ elastic, $\sigma_{\text {tot },}$ min. bias, soft diffraction	$\mathbf{2}$ large $\|\mathrm{t}\|$ elastic	$\mathbf{3}$ diffraction	$\mathbf{4}$ hard diffraction (under study)	
$\beta^{*}[\mathrm{~m}]$	1540	18	1540	170
N of bunches	43	2808	156	2808
N of part. per bunch Half crossing angle $[\mu \mathrm{rad}]$	0.3×10^{11}	1.15×10^{11}	$(0.6-1.15) \times$ 10^{11}	1.15×10^{11}
Transv. norm. emitt. $[\mu \mathrm{m} \mathrm{rad]}$	1	160	0	150
RMS beam size at IP $[\mu \mathrm{m}]$	454	95	$454-880$	270
RMS beam diverg. $[\mu \mathrm{rad}]$	0.29	5.28	$0.29-0.57$	1.7
Peak luminosity $\left[\mathrm{cm} \mathrm{m}^{-2} \mathrm{~s}^{-1}\right]$	1.6×10^{28}	3.6×10^{32}	2.4×10^{29}	$\sim 0.510^{32}$

TMTM Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

TOTEM Optics Conditions

$$
\mathcal{L}_{\text {Tотем }} \sim 10^{28} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}
$$

TOTEM needs special/independent short runs at high- β^{*} (1540 m) and low ε for precise measurement of the scattering angle down to few $\mu \mathrm{rad}$

Consequence: large beam size at IP

$$
\begin{aligned}
& \sigma\left(\theta^{*}\right)=\sqrt{ } I \beta^{*} \sim 0.3 \mu \mathrm{rad} \\
& \sigma^{*}=\sqrt{ } \varepsilon \beta^{*} \sim 0.4 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{array}{ll}
y=L_{y} \theta_{y}^{*}+v_{y} y^{*} & L=\left(\beta \beta^{*}\right)^{1 / 2} \sin \mu(s) \\
x=L_{x} \theta_{x}^{*}+v_{x} x^{*}+\xi D_{x} & v=\left(\beta / \beta^{*}\right)^{1 / 2} \cos \mu(s)
\end{array}
$$

At the detector: Maximize L and minimize v

- parallel to point focussing $(v=0) \rightarrow$ unique position-angle relation
-Maximize $L_{\text {eff }} \rightarrow$ sizeable distance to the beam center($\sim 1 \mathrm{~mm}$)

Reduced number of bunches (43 and 156) to avoid interactions further downstream

Trajectories of protons scattered at the same angle but at

TMTMN Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC
High β optics (1540 m): lattice functions

V.Avati/TOTEM

TMTV Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

Elastic Scattering: Resolution

t-resolution (2-arm measurement)

ϕ-resolution (1-arm measurement)

Test collinearity of particles in the 2 arms
\Rightarrow Background reduction.

TMTM Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

Elastic Cross section ($t=0$)

		Extrapolation Uncertainty
Beam divergence	10%	-0.05%
Energy offset	0.1%	-0.25%
	0.05%	-0.1%
Beam/ detector offset	$100 \mu \mathrm{~m}$	$-0.32 /-0.41 \%$
	$20 \mu \mathrm{~m}$	$-0.06 /-0.08 \%$
Crossing angle	$0.2 \mu \mathrm{rad}$	$-0.08 /-0.1 \%$
Theoretical uncertainty	(model dependent) -0.5%	

Accuracy of σ tot

$$
\left(\sigma_{\text {inel }} \sim 80 \mathrm{mb}, \sigma_{\mathrm{el} .} \sim 30 \mathrm{mb}\right)
$$

Trigger Losses (mb)

	$\sigma(\mathrm{mb})$	Double arm	Single arm	After Extrapolation
Minimum bias	58	0.3	0.06	0.06
Single diffractive	14	-	2.5	0.6
Double diffractive	7	2.8	0.3	0.1
Double Pomeron	1	-	-	0.02
Elastic Scattering	30	-	-	0.1

Vertex extrapolation

[^0]TMTM Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC
Elastic Scattering: -t acceptance

Run at lower energy $\sqrt{s}<14 \mathrm{TeV}$ (or move the detectors closer than $10 \sigma+0.5 \mathrm{~mm}$): $|t|=2 \times 10^{-4} \div 2 \times 10^{-3} \mathrm{GeV}^{2} \longrightarrow$ Coulomb region, Interference, ρ measurement, B slope

Large | $\dagger \mid$

$$
|t|=1 \div 10 \mathrm{GeV}^{2}
$$

$$
\beta^{\star}=18,170 \mathrm{~m}
$$

Elastic Scattering Cross-Section

(1)
(2)

Running Scenarios

| Scenario Physics: | 1
 low \|t| elastic, $\sigma_{\text {tot }}$, min. bias, soft diffraction | | 3 diffraction | $\begin{gathered} 4 \\ \text { hard } \\ \text { diffraction } \\ \text { (under study) } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\beta^{*}[\mathrm{~m}]$ | 1540 | 18 | 1540 | 170 |
| N of bunches | 43 | 2808 | 156 | 2808 |
| N of part. per bunch | 0.3×10^{11} | 1.15×10^{11} | $\begin{gathered} (0.6-1.15) x \\ 10^{11} \end{gathered}$ | 1.15×10^{11} |
| Half crossing angle [$\mu \mathrm{rad}$] | 0 | 160 | 0 | 150 |
| Transv. norm. emitt. [$\mu \mathrm{m} \mathrm{rad}$] | 1 | 3.75 | 1-3.75 | 3.75 |
| RMS beam size at IP [$\mu \mathrm{m}$] | 454 | 95 | 454-880 | 270 |
| RMS beam diverg. [$\mu \mathrm{rad}$] | 0.29 | 5.28 | 0.29-0.57 | 1.7 |
| Peak luminosity $\left[\mathrm{cm}^{-2} \mathrm{~s}^{-1}\right]$ | 1.6×10^{28} | 3.6×10^{32} | 2.4×10^{29} | $\sim 0.510^{32}$ |

CMS + TOTEM: Acceptance

CMS+TOTEM: largest acceptance detector ever built at a hadron collider
> 90% of all diffractive protons are detected
10 million min. bias events, including all diffractive processes, in a 1 day run with $\beta^{*}=1540 \mathrm{~m}$

V.Avati/TOTEM

CMS/TOTEM Physics

CMS / TOTEM detector ideal for study of diffractive and forward physics

- Soft and hard diffraction in Single and Double Pomeron Exchange production of jets, W, J/ ψ, heavy flavours, hard photons
- Excellent proton measurement: gap survival
- Double Pomeron exchange as a gluon factory
- Production of low mass systems (SUSY, x, D-Y,jet-jet, ...)
- Glue balls, ...
- Higgs production ???
- Structure functions (parton saturation) with and without detected protons
- Forward physics: DCC, particle and energy flow
- $\quad \gamma \gamma$ physics

TM「TN Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

TOTEM+CMS Physics: Diffractive Events

Measure $>\mathbf{9 0 \%}$ of leading protons with RPs and diffractive system ' X ' with $\mathrm{T} 1, \mathrm{~T} 2$ and CMS.

-Triggered by leading proton and seen in CMS
-Central production of states X:
$\mathrm{X}=\chi_{\mathrm{c}}, \chi_{\mathrm{b}}$, Higgs, dijets, SUSY particles, ...

TM TMW Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC
Diffractive protons at $\beta^{\star}=1540 \mathrm{~m}$

Diffractive protons are observed in a large $\xi-\mathrm{t}$ range> 90% are detected -t > $2.510^{-3} \mathrm{GeV}^{2} \quad 10^{-8}<\xi<0.1$
ξ resolution ~ few \%。

TMTM Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

Diffractive protons at $\beta^{*}=172 \mathrm{~m}$ (under study)

TOTEM+CMS Runs

Standalone running:
forseen only for elastic scattering and total cross-section
Common running:
DAQ and Trigger must be CMS-compatible
(hardware and software)
TOTEM can act as a CMS subdetector
TOTEM can trigger CMS:
Trigger from the Roman Pots must arrive at CMS within the CMS trigger latency:
OK for the Pot at 220 m
Pots farther than 220 m from IP (none foreseen yet) cannot trigger!

Summary: physics

- Measure total cross-section $\sigma_{\text {tot }}$ with a precision of 1% $\mathcal{L} \sim 10^{28} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ with $\beta^{*}=1540 \mathrm{~m}$
- Measure elastic scattering in the range $10^{-3}<-\mathrm{t}<8 \mathrm{GeV}{ }^{2}$
- With the same data study of soft diffraction and forward physics: $\sim 10^{7}$ single diffractive events, $\sim 10^{6}$ double Pomeron events
- With $\beta^{*}=1540 \mathrm{~m}$ optics at $\mathcal{L}=2 \times 10^{29} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$: semi-hard diffraction ($\mathrm{p}_{\mathrm{T}}>10 \mathrm{GeV}$)
- With $\beta^{*}=170 \mathrm{~m}$ optics (under study) at $\mathcal{L} \sim 0.510^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$: hard diffraction and DPE
- Study of rare events (Higgs, Supersymmetry,...) with $\beta^{*}=0.5 \mathrm{~m}$ using eventually detectors in the cold region (420 m)
- TOTEM and CMS will write a common physics LOI in 2005

Summary: detectors

RP test in the SPS has been successful : TOTEM has gained experience in installing and operationg the system in the tunnel.

Final RP prototype ready at the end of 2005.
Installation in the LHC tunnel mid2006

Forward proton detectors: both technologies (Edgeless Planar \& Planar 3D) are chosen. Full production \& test in 2006.

T1 telescope: ready for production. Integration test in CMS during Sept. 2005.

T2 telescope: production of a pre-series of 5 final detectors in 2005, full production in 2006

TMTM Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

TMTM Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

Current Terminating Structure on Microstrip detectors

(in collaboration with IOFFE PTI St. Petersburg/RIMST Moscow)

Objective:

- Use Standard Planar Technology
- Working Temperature $>-20^{\circ} \mathrm{C}$
- Reduction of the guard-ring structure to less than $100 \mu \mathrm{~m}$

TMTM Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

TRADITIONAL PLANAR DETECTOR + DEEP ETCHED EDGE FILLED WITH POLYSILICON

Planar with 3D edges

13keV 6 mm X-ray beam
Insensitive edge $=5 \pm 2 \mu \mathrm{~m}$

Mechanics: Thin window

R\&D included in the TS/MME workpackage
-The shape and size of the window is defined
-Welding technology of the thin window is the main issue

- Brazing (used for the SPS) can be improved
- TIG welding gives better results, (i.e. planarity of 100microns)
-Laser and Electron-beam welding are considered for a new prototype in 2005

uо!̣эәs sso.э рןəM פוֹ

[^0]: V.Avati/TOTEM

