
Commissioning CDF for Physics

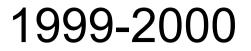
An Historical Look at 1999-2002

CDFII – A New Detector

- Endplug Calorimeter
- **Tracking**
 - Silicon Vertex Detector
 - Intermediate Silicon Layers
 - Layer 00
 - Central Outer Tracker
- Front End Electronics
- Trigger (pipelined)
- DAQ System
- Muon systems
- Luminosity Monitor
- TOF
- Offline Software

- Early: 1999-2000 (detector incomplete)
 - Integration of components into DAQ
 - Daily running pedestals, calibration runs
 - November 1999: Three system readout test (DAQ w/ multiple readout systems: Calorimeter/TDC/Si DAQ
 - January 2000: L1 calorimeter trigger established.
 - Cosmic Ray Running
 - Once L1 trigger established, begin timing-in of systems
 - Steady increase in fraction of components read-out

The ability to partition the DAQ is crucial during this period



- Sept.-Oct. 2000 Commissioning Run
 - Si "Barrel 4" only
 - Many other systems partial
 - COT just barely on-line (1st cosmics seen just days before roll-in)

The commissioning run had some of everything, and enough to allow us to shake down much of the system prior to the beginning of Run II operations.

- Nov. 2000-March 2001
 - Complete the detector
 - Continued integration work
 - Daily cosmic running
- March 2001-February 2002
 - Commission for physics data

Commissioning without Beam

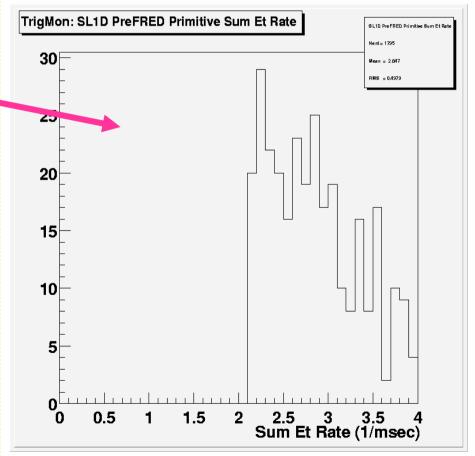
Major steps to timing-in CDF electronics

- 1. Synchronize clock and control signals to all electronics subsystems
 - Done without beam
- Vertical Synchronization of each Front-end electronics subsystem with corresponding Trigger chain (e.g. ADMEM-L1 Calorimeter-L1 Decision). Synchronize each Front-end with Beam:
 - Coarse (132ns steps) reading out the right clock cycle
 - ➢ Fine (1-5ns steps) getting all the charge in the right cycle
 - Done with cosmics, tuned with beam
- 3. Horizontal Synchronization across Front-end and Trigger systems
 - Done with cosmics

P. Wilson/Jan. 2000

CR Activities

- Establish L1 calorimeter/muon triggers
- Basic Level 3 filtering established
- Steady build-up of more complete read-out
- Development of detector monitoring
 - peds, ped widths, occupancy
- Set calorimeter readout thresholds
- Measure calorimeter noise rates (e.g. 1 PMT in plug).
- Development of error handling & useful error reporting
- Establish regular, reliable running of the detector.


Commissioning L1 Trigger w/ Cosmics

T.M. Liss 4/28/05

- Level 1 Calorimeter
 Triggers commissioned
 with cosmics
 - Sum Et,
 Single tower,
 Missing Et triggers
 Muon "primitives"

Histogram made with online monitor.

The Commissioning Run

	Date	9/5		9/18						10/31	
	Week	-2	-1	0	1	2	3	4	5	6	
_	Period		Roll-in		A	В			С		-
	Lum.		10^29		10^30						
	Bunches			I	proton	1 × 8	1 × 8	36	6 x 8	36 × 36	

- Period A : Proton only beam (1.5 wks)
- Period B : Observe first collision (1 wk)
- Period C : Subsystem commissioning (3.5 wks)

What Was There

T.M. Liss 4/28/05

Status of Detectors

(at the beginning of the run)

Sy	stem	Coverage	Limitation
Track	СОТ	$30^{\circ} < \phi < 120^{\circ}$	TDC
		$210^{\circ} < \phi < 330^{\circ}$	
	Si-4	$45^{\circ} < \phi < 105^{\circ}$	
Muon	CMU	full	
	СМР	Top, Bottom, South Wall	
	СМХ	North-West	TDC
	IMU	North-West	TDC
Calor.	CEM	full	
	CHA	full	
	WHA	full	
	PEM	full	
	PHA	full	
	CES	$225^{\circ} < \phi < 255^{\circ}$ (West)	electronics
	PES	$225^\circ < \phi < 315^\circ$ (West)	electronics
	HadTDC	$225^{\circ} < \phi < 270^{\circ}$	electronics
Lum.	CLC	full	
Beam I	oss Mon.	full	

Status of Triggers

(at the beginning of the run)

S	ystem	Coverage		
L1	Calorimeter	full		
Trigger	Muon stub	full		
	XFT	full		
	XTRP	$30^{\rm o} < \phi < 90^{\rm o}$		
	2-Track	none		
	Global	full		
L2	Cal	full		
Tagging	SVT	$45^{\rm o} < \phi < 105^{\rm o}$		
	XCES	$225^{\circ} < \phi < 255^{\circ}$		
	Global	2 / 4 processors		
L3		30 / 144 processors		
Tagging				

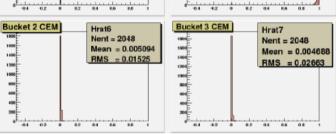
- Period A (proton only)
 - Verify Synchronization of clock
 - Commissioning beam loss monitor (BSC-1) and CLC
 - Total proton loss measurement (BSC-1) beam cogging
 - Establish minimum bias trigger (CLC E*W coincidence)
- Period B (1x8 bunches)
 - Luminosity measurement (bunch by bunch, & total) CLC
 - Interaction point (z-vertex) measurement CLC
 - Total proton, antiproton loss measurement BSC
 - Time in Front-ends : ADMEM, TDCs (should carry over from cosmics)

• Read out 4 "buckets" to check timing Y.K. Kim/Sep.2000

Commissioning Run Plan

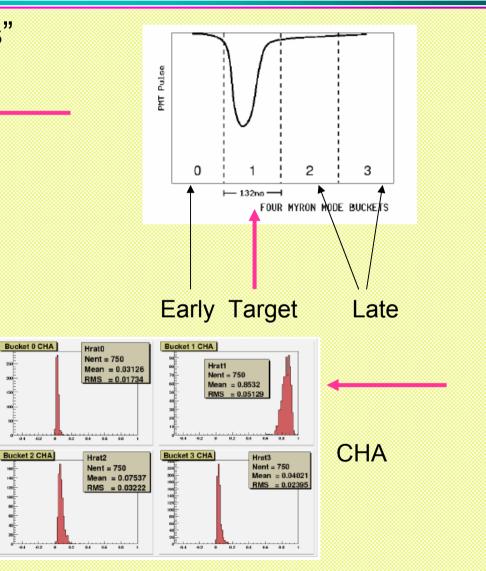
T.M. Liss 4/28/05

- Period C (1x8, 36x8, 36x36 bunches)
 - Understand operation of COT with colliding beam
 - Stability of the chamber with a large amount of ionization
 - · Determine hit occupancies / efficiencies per superlayer
 - Begin to understand tracking issues / t0, drift velocity
 - Synchronous noise from Silicon readout ?
 - Understand operation of Si Barrel-4, new endplugs.
 - Commission calorimetry and muon systems.
 - Commission DAQ system (Hardware Event Builder, L3, Data Logger ...)
 - Establish operation of L1 Trigger system functionality
 - Calorimeter & muon stubs triggers
 - Tracking slice COT XFT XTRP to Muon / Calorimeter
 - Capture data in L2 processors, simple tagging/prescaling
 - Read-in L1 and XFT info, Cluster and ISO cluster operation
 - SVT for instrumented region


 Take a few hundred k good events for the COT for the post-run Y.K. Kim/Sep.2000

Refining the Calorimeter Timing

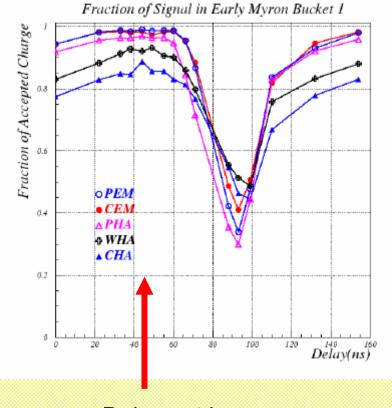
T.M. Liss 4/28/05


Read out 4 132ns "buckets" • Bucket 0 CEM Bucket 1 CEM Hrat4 Nent = 2048 Hrat5 Mean = 0.0001645 Nent = 2048 RMS = 0.002124 Mean = 0.979RMS = 0.09437 0.2 0.4 0.6 0.8 1 0 02 0.4 0.5 0.8 10.4

CEM

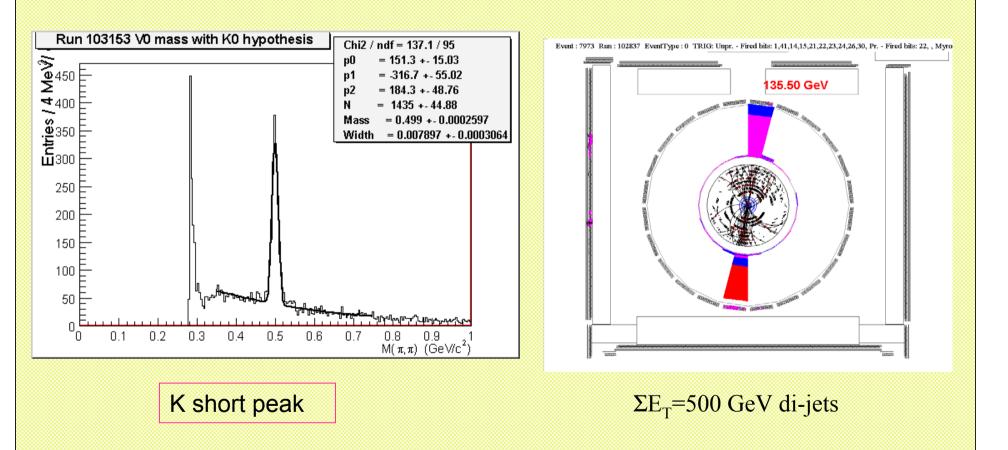
$$R_i = \frac{q_i}{\sum_{j=0-3} q_j} \quad i = 0-3$$

Fraction of total charge in each bucket.



Refining Calorimeter Timing

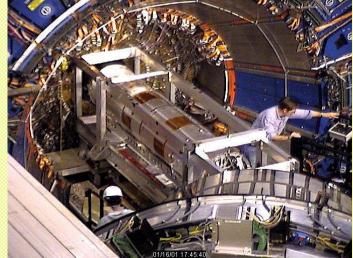
T.M. Liss 4/28/05


• Delay scan

Delay set here

Data From the Commissioning Run

The Official Start of Run II to Run II Physics



Si Commissioning

- Only prototype Si installed for commissioning run
 - Allowed nominal Si DAQ commissioning.
 - Established that Si readout did not cause noise problems elsewhere.
 - Left most of Si commissioning still to be done.
- Si was installed in January 2001 with just 2 months to start of Run II
 - 722K channels

 (maybe not CMS or ATLAS, but it's enough)

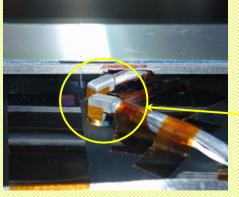


C. Hill/Jan. 2003

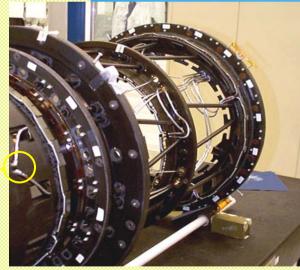
Si Commissioning

- Installation completed May 2001
- Not so simple, why?
 - Schedule complicated because Run II began March '01
 - Access to collision hall restricted before connection complete
 - Took 7 weeks employing shifts
 24 hours a day, 7 days a week
 - 7 page checklist Needed for safety of detector Whole system was being shaken down simultaneously for the first time!
 - Lots of stiff, heavy cables
 Interfere with one another
 Weight tends to disconnect
 - Not easy to verify connections
 Used mirrors+boroscope

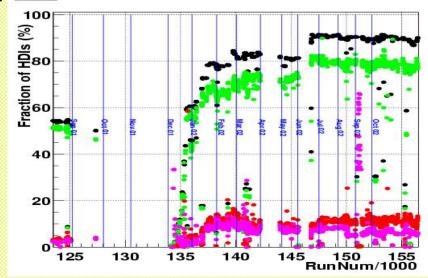
ISL Cooling Blockage


T.M. Liss 4/28/05

- ISL cooling lines blocked
 - · Initially could not operate detector
 - Blockage due to epoxy in 90 degree bends
 - Eventually cleared using Yag LASER + prism



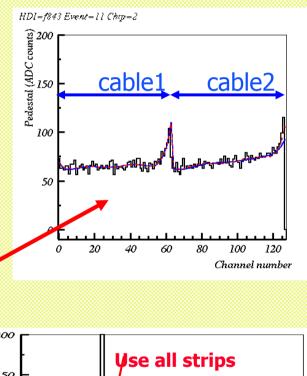
What's this?

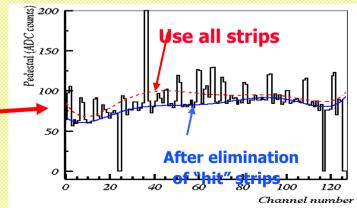

Si Commissioning w/ Beam

T.M. Liss 4/28/05

- Bit errors in data due to a variety of sources
 - Data clock problems
 - Modified all 58 FIBs (collision hall)
 - Optical system problems due to
 - Light output
 - Mechanical damage to fibers
 - Electrical contact at receiver end

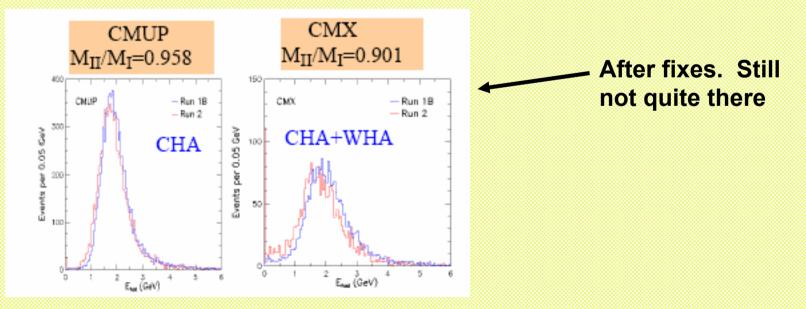
BLACK - fraction of the detector used in any given run GREEN - fraction of the detector used with < 1% errors of any kind





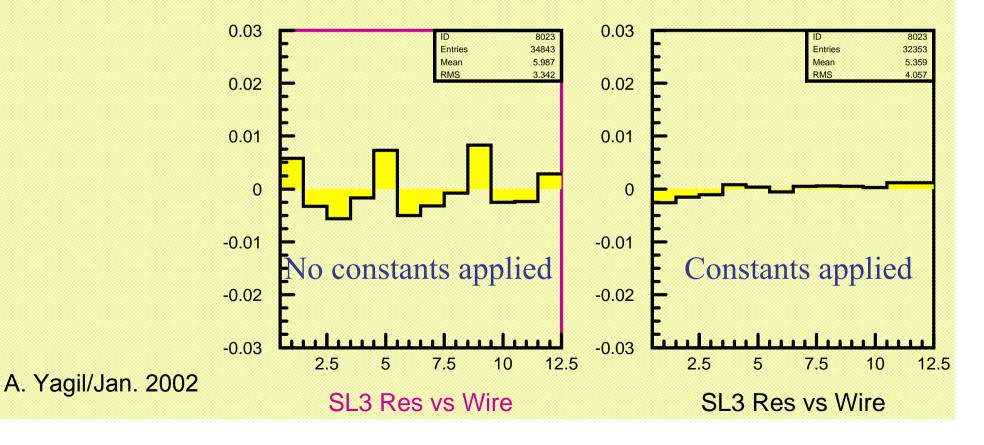
Si Commissioning w/ Beam: L00 Noise

- A significant fraction of L00 detectors have non-uniform pedestals
 - Magnitude of effect varies from event-to-event, module-tomodule and within a sensor
 - DPS no help
- Reason: Noise picked up by analog signal cables
 - Effects are seen at edges of cables, within one sensor
- Solution: Learn to live with it
 - Readout all strips in L00
 - Use this information to fit for an event-by-event pedestal



- Issues for physics readiness
 - Is the detector timed-in properly?
 - Is all the charge read out?
 - Is the detector properly calibrated?
 - Are trigger thresholds where they're supposed to be?
 - Is pedestal subtraction working properly?
 - Is the detector fully efficient?
 - Is the detector configuration stable?
 - Doing physics with an evolving detector configuration is very painful (though not impossible)

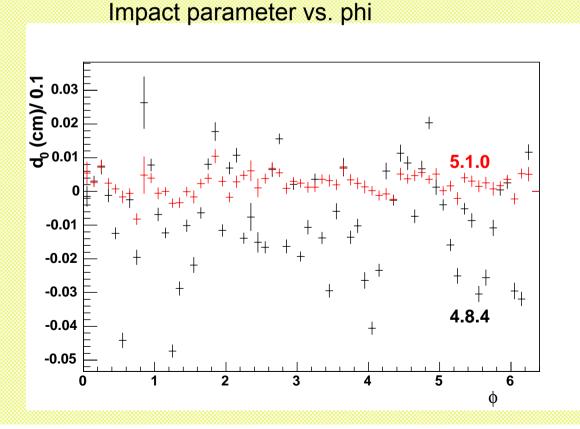
- Before Dec 10, 2001 the central hadron calorimeter E scale was based on 2000 Cs source calibration
 - μ MIPs (high Pt, J/Psi) \Rightarrow E scale ~16% low
 - Due to problem with original calibration
 - No accounting for energy outside integration window



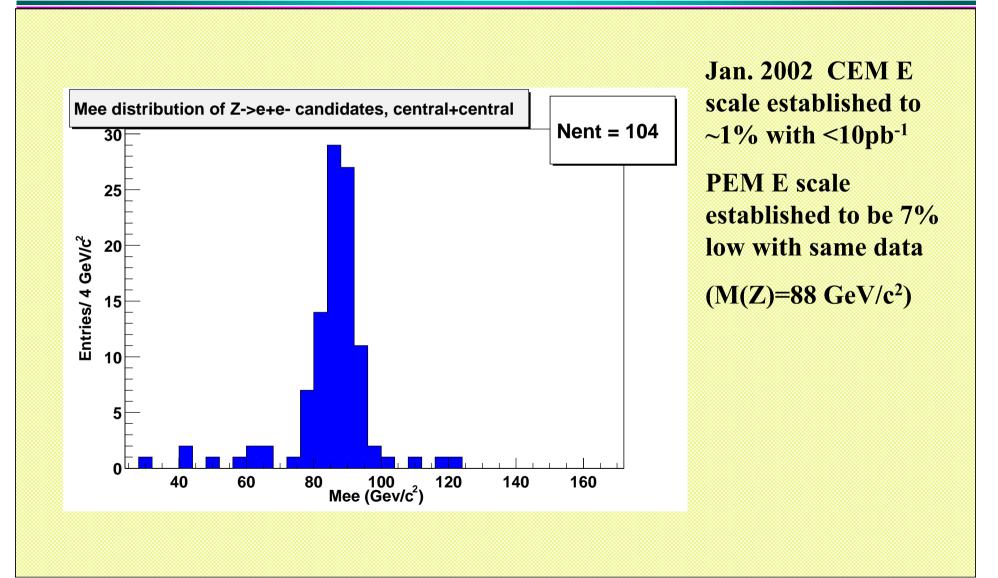
Tracking Chamber

- T0's from pulsing the front end
 - Constants stored in DB, applied to raw hit times
 - Need proper length calibration

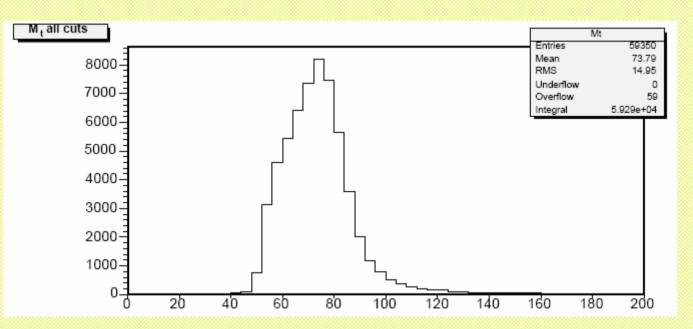
Tracking Chamber



- COT online "Stage0" calibration
 - Select good hits from good tracks.
 - Drift model with:
 - Constant drift velocity (except near wire)
 - aspect angle correction
 - time slewing correction (based on Penn sim.)
 - 7 parameters (v, β, t0, w, ρ, 2 near wire)
 - Fit (for each run) drift velocity, drift angle, t0
 - → study residual distribution


- Cosmic ray based alignment: Cell tilts/shifts
 - Includes corrections for electrostatics and gravity

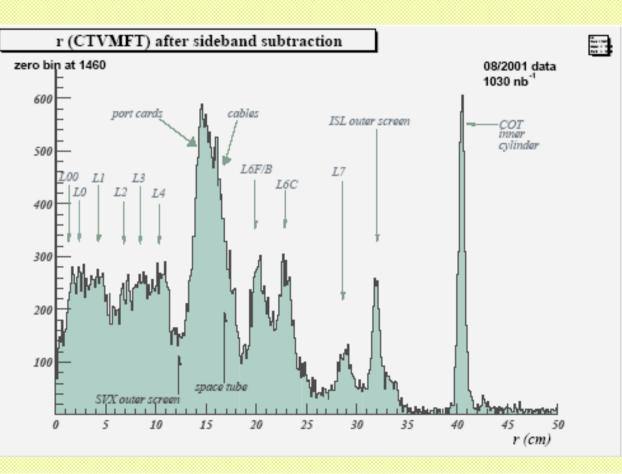
Commissioning with Data



 Tracking efficiency established with calorimeter-based W trigger ("W-no track")

High-Pt Isolated track efficiency >99%

Commissioning with Data



T.M. Liss 4/28/05

 Photon conversions used to understand the radial material distribution

August 2001

1pb-1

2700

2900

3100

3300

 $\mu^+\mu^-$ Mass (MeV/c²)

Commissioning with Data

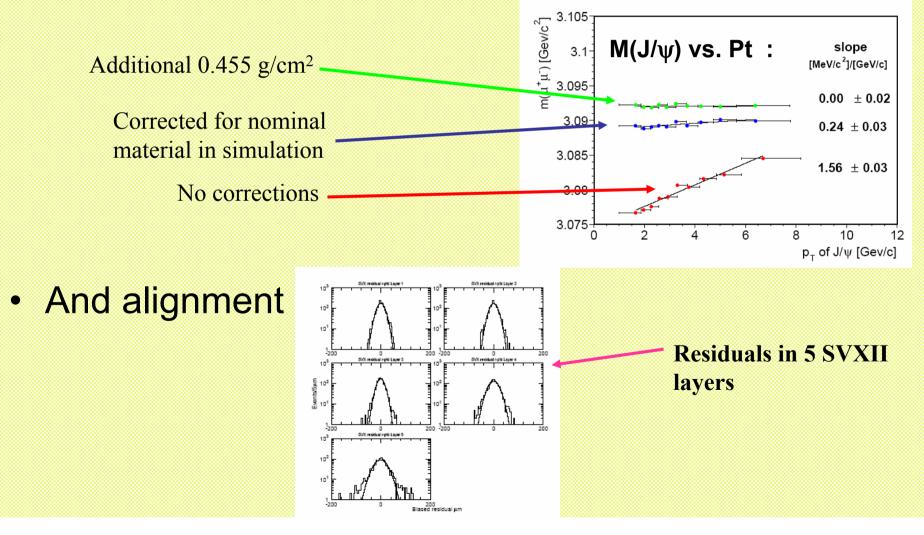
T.M. Liss 4/28/05

3500

3700

3900

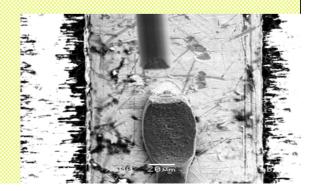
- Very early J/ψ data (few pb⁻¹)
 - Established basic momentum scale for tracking
 - Used to measure muon chamber efficiencies
 - Used to measure vertex resolution of SVX
 - Used to measure energy scale of hadron calorimeter



Commissioning with Data

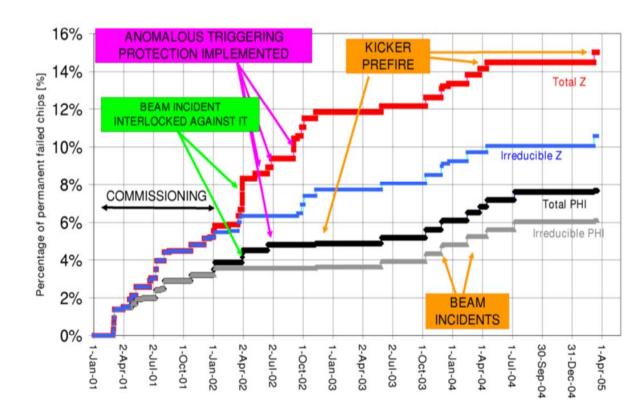
T.M. Liss 4/28/05

• Additional J/ ψ data used to understand material



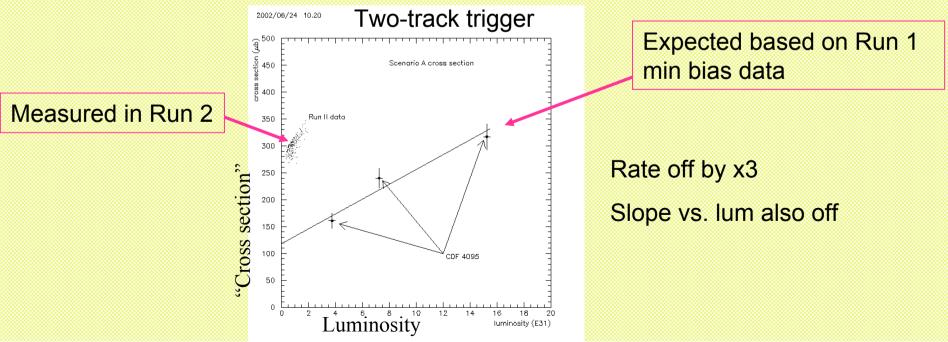
Unanticipated Problems

- Early TeV beam had high losses
 - Si frequently off for protection
 - Muon chamber currents very high
 - Installed shielding
- Power supply failures with beam
 - Transistor deaths due to "single event burnout"
 - Reduced bias/more resistant transistors/shielding
- TDC production problems (bad vias)
 - Slowly replaced boards (access required)
- Silicon jumper failures
 - Jumpers rout signals from phi side to z side
 - Failures due to resonant oscillation from Lorentz forces during abnormal trigger conditions.
 - Reduced current through jumper
 - Eliminated guilty trigger test mode
 - Lost some z-side sensors



Unanticipated Problems

- Beam Incidents
 - Abort kicker pre-fire
 - Loss of TeV rf


SVXII: time evolution of unrecoverable failures

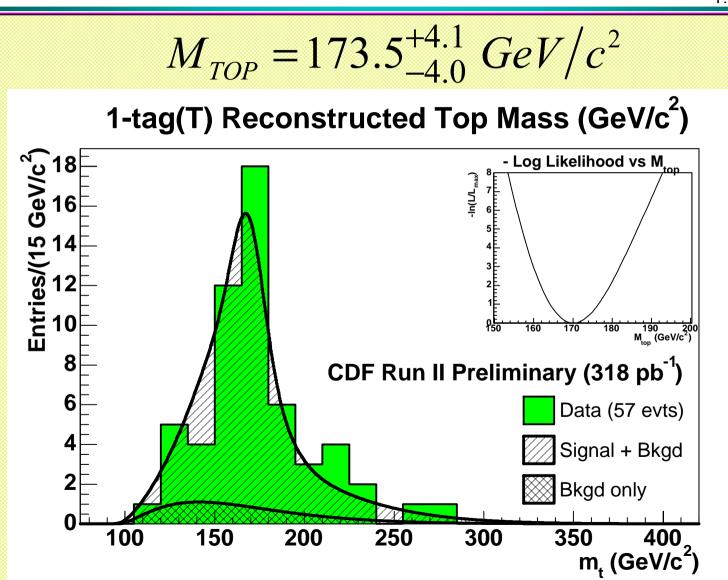
- COT Occupancy much higher than expected
 - Not completely understood presumably due to additional material
- Many trigger rates higher than expected
 - Event those that were based on data from Run 1

- Commissioning Run (October 2000)
 - Months of integration work and CR running was well worth it.
 - Ease of use and stability of consumer server was a major plus
 - Easy to write and integrate on-line monitors that were crucial to understanding operation with beam.
 - Could have done more with more TDCs
- Run II Commissioning Period (March 2001-February 2002)
 - Even a short 1 month commissioning run was well worth it.
 - Could have done better at establishing performance benchmarks for each system.
 - Which histograms are the key to each system's health?
 - What is "normal"?
 - A good trigger simulation is an essential tool
 - Late arrival of TDCs cost us
 - TDCs had many problems that were uncovered/fixed slowly.

Lessons

- Run II Commissioning Period (cont)
 - Downtime accounting is a powerful tool for increasing data taking efficiency
 - A good and flexible simulation is worth the effort up front
 - You will have work to do when the data arrives
 - Don't believe your simulation until it has been tuned on the data.
 - Establish standard data quality monitoring *early* and produce good run lists in ~real time
 - Establishing physics readiness would have gone quicker had we done better at establishing good and bad runs.
 - Quick access to key datasets (Z, J/ ψ ,...) is essential for commissioning

Lessons



- Silicon (clearly the most difficult commissioning effort)
 - Should have connected silicon before detector rolled into Collision Hall
 - All electrical connections through single 96 pin connector simple connection but single-point failure
 - Connectors should lock in place and/or give feedback when not properly connected (e.g. LED)
 - · Cable weight/rigidity needs to be accounted for
 - All external components need to be commissioned <u>before</u> silicon is connected
 - Not enough to test components individually. Need to test entire system.

Despite All This Pain

