# LHC commissioning and interaction with the experiments

Mike Lamont AB-OP

SATURDAY 30<sup>th</sup> April 2005

# Detailed planning for 7-8 and 8-1



### **Sector Test**

- · Rigorous check of ongoing installation and hardware commissioning
- Pre-commission essential acquisition and correction procedures.
  - Commission injection system
  - Commission Beam Loss Monitor system
  - Commission trajectory acquisition and correction.
  - Linear optics checks:
  - Mechanical aperture checks.
  - Field quality checks.
  - Test the controls and correction procedures
- Hardware exposure to beam will allow first reality checks of assumptions of quench limits etc.





### **Objectives**

# Commissioning the LHC with beam - Stage One

- Establish colliding beams as quickly as possible
- Safely
- Without compromising further progress

Take two moderate intensity multi-bunch beams to high energy and collide them.

# **More Specifically**

### 43 on 43 with 3 to 4 x 10<sup>10</sup> ppb to 7 TeV

- No parasitic encounters
  - No crossing angle
  - No long range beam
  - Larger aperture
- Instrumentation
- Good beam for RF, Vacuum...
- Lower energy densities
  - Reduced demands on beam dump system
  - Collimation
  - Machine protection
- Luminosity

30.04.05

- 10<sup>30</sup> cm<sup>-2</sup>s<sup>-1</sup> at 18 m
- 2 x 10<sup>31</sup> cm<sup>-2</sup>s<sup>-1</sup> at 1 m

### and in the process

- Commission
  - the Equipment
  - the Instrumentation
  - the Machine protection system to the levels required.

Looking for an efficient commissioning path to get us to the above objectives

Stage two definition to follow

### **Preparation**

Obvious that meticulous preparation will be key if we are to stand half a chance of efficient commissioning

- Well defined exit conditions from HWC phase
- 6 weeks machine checkout

Clear aim to commission/fix/test everything that can be:

before beam.

### **LHC - 2007**



# Planning: with beam

| 1  | Injection                      |
|----|--------------------------------|
| 2  | First turn                     |
| 3  | Circulating beam               |
| 4  | 450 GeV: initial commissioning |
| 5  | 450 GeV: detailed measurements |
| 6  | 450 GeV: 2 beams               |
| 7  | Nominal cycle                  |
| 8  | Snapback – single beam         |
| 9  | Ramp – single beam             |
| 10 | Single beam to physics energy  |
| 11 | Two beams to physics energy    |
| 12 | Physics                        |
| 13 | Commission squeeze             |
| 14 | Physics partially squeezed     |

### **Beam**

- Pilot Beam:
  - Single bunch, 5 to 10 x 10<sup>9</sup> protons
  - Possibly reduced emittance
- Intermediate single:
  - 3 to 4 x 10<sup>10</sup> ppb
- 4 bunches etc. pushing towards...
- 43 bunches
  - 3 to 4 x 10<sup>10</sup> ppb

Will stepping up & down in intensity/number of bunches through the phases





# At each phase:

- Equipment commissioning with beam
- Instrumentation commissioning
- Checks with beam
  - BPM Polarity, corrector polarity, BPM response
- Machine protection
- Beam measurements
  - beam parameter adjustment, energy, linear optics checks, aperture etc. etc.

# **How long?**

|    | Phase                          | R1/2 | Time [days] |           |
|----|--------------------------------|------|-------------|-----------|
|    | Injection                      | 2    | 1           | 2         |
| 1  | First turn                     | 2    | 3           | 6         |
| 2  | Circulating beam               | 2    | 3           | 6         |
| 3  | 450 GeV: initial commissioning | 2    | 4           | 8         |
| 4  | 450 GeV: detailed measurements | 2    | 4           | 8         |
| 5  | 450 GeV: 2 beams               | 1    | 2           | 2         |
| 6  | Nominal cycle                  | 1    | 5           | 5         |
| 7  | Snapback – single beam         | 2    | 3           | 6         |
| 8  | Ramp – single beam             | 2    | 4           | 8         |
| 9  | Single beam to physics energy  | 2    | 2           | 4         |
| 10 | Two beams to physics energy    | 1    | 3           | 3         |
| 11 | Physics                        | 1    | 2           | 2         |
| 12 | Commission squeeze             | 2    | 4           | 4         |
| 13 | Physics partially squeezed     | 1    |             |           |
|    | TOTAL TIME (WITH BEAM)         |      |             | <b>60</b> |

5



30.04.05

Year one[+] operation:
Lower beam
intensity/luminosity:
Event pileup
Electron cloud
Phase 1 collimator
impedance etc.
Equipment restrictions
Relaxed squeeze, lower
intensities, 75 ns. bunch
spacing

Phase 2 Collimation Full Beam Dump Scrubbed

LHC commissioning etc.

|                         | April     |
|-------------------------|-----------|
| Hardware commissioning  |           |
|                         | June      |
| Machine checkout        |           |
|                         | August    |
| Beam commissioning      |           |
|                         | October   |
| Pilot proton run        | November  |
|                         | December  |
| Shutdown                |           |
|                         | February  |
| Machine checkout        | March     |
| 75ns commissioning      |           |
| First ION run           | May       |
| 75ns run                | June      |
| 75HS TUN                | July      |
|                         | August    |
| Low intensity 25ns run  | September |
|                         | October   |
|                         | November  |
| Shutdown                | December  |
| Shutdown                | January   |
|                         | February  |
| Machine checkout        | March     |
| Startup and scrubbing   | April     |
|                         | May       |
| Half intensity 25ns run | June      |
| man intensity 25hs run  | July      |
|                         | August    |
|                         | September |
|                         | October   |
| Shutdown                | November  |
| Silutuowii              | December  |
|                         | January   |
|                         | February  |
| Machine checkout        | March     |
| Startup and scrubbing   | April     |
|                         | May       |
|                         | June      |
| Push to nominal 25ns    | July      |
| . don to nominal zons   | August    |
|                         | September |
|                         | October   |
|                         | November  |
| Shutdown                | December  |
| Silitaowii              | January   |
|                         | February  |
| Machine checkout        | March     |
| Startup and scrubbing   | April     |
|                         | May       |
|                         | June      |
| Nominal 25ns            | July      |
|                         | August    |
|                         | September |
|                         | October   |
|                         | November  |

# **Stage 1 - Luminosities**

- 43 to 156 bunches per beam
- N bunches displaced in one beam for LHCb
- Push one or all of:
  - 156 bunches per beam
  - Partial optics squeeze
  - Increased bunch intensity

| Number of bunches per beam                              | 43                   | 43                          | 156                         |
|---------------------------------------------------------|----------------------|-----------------------------|-----------------------------|
| β* in IP 1, 2, 5, 8 (m)                                 | 18,10,18,10          | 2,10,2,10                   | 2,10,2,10                   |
| Crossing Angle (μrad)                                   | 0                    | 0                           | 0                           |
| Bunch Intensity                                         | 1 10 <sup>10</sup>   | 4 10 <sup>10</sup>          | 4 10 <sup>10</sup>          |
| Luminosity IP 1 & 5 (cm <sup>-2</sup> s <sup>-1</sup> ) | ~ 3 10 <sup>28</sup> | ~ 5 <b>10</b> <sup>30</sup> | ~ 2 <b>10</b> <sup>31</sup> |
| Luminosity IP 2 (cm <sup>-2</sup> s <sup>-1</sup> )     | ~ 6 10 <sup>28</sup> | ~ 1 10 <sup>30</sup>        | ~ 4 <b>10</b> <sup>30</sup> |

# Stage 2 – 75ns luminosities

- Partial squeeze and smaller crossing angle to start
- Luminosity tuning, limited by event pileup
- Establish routine operation in this mode
- Move to nominal squeeze and crossing angle
- Tune IP2 and IP8 to meet experimental needs

| Number of bunches per beam                              | 936                  | 936                  | 936                  |
|---------------------------------------------------------|----------------------|----------------------|----------------------|
| β* in IP 1, 2, 5, 8 (m)                                 | 2,10,2,10            | 0.55,10,0.55,10      | 0.55,10,0.55,10      |
| Crossing Angle (μrad)                                   | 250                  | 285                  | 285                  |
| Bunch Intensity                                         | 4 10 <sup>10</sup>   | 4 10 <sup>10</sup>   | 9 10 <sup>10</sup>   |
| Luminosity IP 1 & 5 (cm <sup>-2</sup> s <sup>-1</sup> ) | ~ 1 10 <sup>32</sup> | ~ 4 10 <sup>32</sup> | ~ 2 10 <sup>33</sup> |
| Luminosity IP 2 & 8 (cm <sup>-2</sup> s <sup>-1</sup> ) | ~ 2 10 <sup>31</sup> | ~ 2 10 <sup>31</sup> | ~ 1 10 <sup>32</sup> |

# **Stage 3 – 25ns Luminosities**

- Start with bunch intensities below electron cloud threshold
- Increase bunch intensities to beam dump & collimator limit
- Tune IP2 and IP8 to meet experimental needs

| Number of bunches per beam                              | 2808                 | 2808                 | 2808                    |
|---------------------------------------------------------|----------------------|----------------------|-------------------------|
| β* in IP 1, 2, 5, 8 (m)                                 | 0.55,10,0.55,10      | 0.55,10,0.55,10      | 0.55,10,0.55,10         |
| Crossing Angle (μrad)                                   | 285                  | 285                  | 285                     |
| Bunch Intensity                                         | 3 10 <sup>10</sup>   | 5 10 <sup>10</sup>   | 1.15 1011               |
| Luminosity IP 1 & 5 (cm <sup>-2</sup> s <sup>-1</sup> ) | ~ 7 10 <sup>32</sup> | ~ 2 10 <sup>33</sup> | <b>10</b> <sup>34</sup> |
| Luminosity IP 2 & 8 (cm <sup>-2</sup> s <sup>-1</sup> ) | ~ 4 10 <sup>31</sup> | ~ 1 10 <sup>32</sup> | ~ 5 10 <sup>32</sup>    |

# Machine/Experiment Interface

- Beam monitoring through injection and squeeze: strategies for the protection of the experiments' most inner detectors
- More generally, issues associated with machine backgrounds
- Interaction with TOTEM and its roman pots; commissioning of high-beta beams



### **Tevatron**

#### Picking up from Jeff Spalding's talk on Thursday

- Radiation
  - SEB
  - Roman pots
- Fast Beam Losses
  - SI damage
- Messy aborts [serious]
  - Kicker pre-fires
  - Beam in the abort gap
- Background [annoying]
  - Up stream Halo scraping
- Monitor potentially dangerous accelerator systems [TEVMON]
  - If it's dangerous for you it dangerous for us
  - Shouldn't we be doing this

### **Requests from Experiments**

- Single beam runs
- Early operation:
  - As fast as possible to stable operations with 25 ns bunch spacing, L ~ 10<sup>33</sup> cm<sup>-2</sup>s<sup>-1</sup> [pile up]
  - However, they'll take anything
  - Displace some bunches during 43/156 for collisions in LHCb
- Tune luminosity, spectrometer magnets, and  $\beta^*$
- LHCb:
  - squeeze with low bunch intensities [single event per crossing, 2
     1032 @ 25 ns] to beta\* = 2 m
- Alice
  - protons, L ~ 10<sup>29</sup> cm<sup>-2</sup>s<sup>-1</sup>
  - Stable conditions by  $\beta^*$  rather than separated beam limits under review

# Requests from experiments

#### • 75 ns:

- 2 weeks sufficient [synchronisation, background studies]
- Avoid pile up
- LHCb
  - to 25 ns ASAP [avoiding loss in B rate]
  - again tuning beta\* to 2 m if possible

#### Low Energy Runs:

- Totem: √s 1.8 TeV & 8 TeV
- Alice: pp @ 5.5 TeV ( $\sqrt{s}$  ~ nominal pb-pb)

#### Pb-Pb

- Alice: 4 week run after first long shutdown
- plus collisions in CMS & Atlas

# Requests from experiments

#### TOTEM

- beta\* = 1540 m., 43 bunches, low emittance
- Plus large t elastic scattering at 18 m
  - 3 x 1-day runs at 1540 plus 2 short runs at 18 m
- Roman Pots at 10 σ, high beam stability, low BGs



RPs at ~10 $\sigma$  imply : collimators must be set to 6/7 s. e\* ~ 1 mm, ~ 4 times smaller than nominal :

→ collimator gaps ≤ 1 mm

Requires special machine conditions—
similar to polarization at LEP.
The difficulty and challenge of TOTEM
operation is coming from the requested
precision for both optics & beams.

# **Magnets**

### Magnets

- Spectrometers OFF during initial commissioning
- ON during injection in routine operation
- LHCb: polarity change every fill
- Alice: Polarities [solenoid and dipole] changed 1 to 4 times per year. ON/OFF or intermediate

# Nominal Cycle – Beam Loss

#### Injection

- Losses at injection: injection oscillations, RF capture
- Big beams, lower dynamic aperture, full buckets, un-captured beam, long range beam-beam, crossing angles, persistent current decay
- Won't be pretty. 10 hours lifetime will be good.

#### Start ramp

- Un-captured beam: lost immediately (~5% total)
- Snapback: chromaticity, tunes all over the place

#### Ramp

- Things should calm down, assume 10 hour lifetime
- Squeeze
  - Tunes, chromaticity, collimator, TCDQ adjustments expect some lifetime dips

#### Collide

- Beam finding, background optimisation
- Physics
  - Collisions, beam-gas, halo production
  - Synchrotron radiation damping will help against IBS, noise

# **Monitoring**

- Essential beam monitoring
  - Beam Loss Monitors
    - connected to interlock system
  - Beam Position Monitors
    - selected few to interlock system
    - orbit feedback to ensure stability in cleaning regions
  - Beam Current Transformer
    - dl/dt monitored connected to interlock system
    - Safe Beam Flag
  - Beam Condition Monitors
    - Experiments connected to interlock system
  - Abort Gap Monitor
- Radiation
  - Controls electronics
  - Personnel

# **Essential message**

#### We have to collimate:

Less than 0.1% of protons lost can escape and can impact on the SC magnets, which otherwise quench

Less than 0.002% of the stored beam intensity can be lost at any place in the ring other than the collimators - > damage

#### We have to protect:

#### Injection

- Pilot and BPF ensures correct settings
- Absorbers and collimators protecting machine (and thus experiments)

#### Abnormal dump/ beam in Abort gap

- Collimators & absorbers (re) designed with this in miind

# Collimation



#### HAVE TO COLLIMATE AT ALL TIMES



### **Asynchronous dump – pre-fire**

- Retrigger remaining 14 kickers in ~700ns
- ~120 bunches swept across LHC aperture



- TCDS (intercepts ~40 bunches) protects the extraction septum
- TCDQ +TCS (~27 bunches) protect Q4 magnet, AND downstream LHC
  - The latter implies precise (±0.5σ) positioning of the jaw WRT beam....

### **Backgrounds**

- Collision debris
  - Elastic & Diffractive: emittance growth, collimation, quasi-local loss on aperture limits
- Residual Gas
  - Inelastic in warm & cold section of IRs and adjacent arcs
- Beam Halo
  - Intra Beam Scattering, Touschek effect, Resonances, Long range beam-beam, RF Noise, Electron cloud, Collective instabilities
  - ++ Synchrotron radiation damping will help at 7 TeV
- Imperfect cleaning, lifetime dips

Necessarily mop most of this up in the cleaning sections Tertiary halo lost on aperture limit conveniently situated in triplets next to experiments.

# **Tertiary Collimators**

Around the interaction points in order to protect the superconducting triplets and detectors:

- Leakage from collimator system tertiary halo
- Some beam from unsynchronised beam abort inefficiency of MPS at IP6

Primary collimators -  $6\sigma$ , Secondary collimators -  $7\sigma$ , Inner triplet -  $8.4\sigma$ , Arcs ~  $30\sigma$ .

Triplets potentially absorb tertiary beam halo from 8.4  $\sigma$  to 30  $\sigma$ 

should not exceed 2×10<sup>6</sup> p/s,

#### TERTIARY COESLINIATOR FUNCTIONALITY



Particle tracks E>10 GeV for a few 7-TeV protons on TCTs

# **Beam Interlock System**

- Inputs in machine protection system
  - Moveable things
    - Alice's ZDC
    - Roman pots [set by machine OP]
    - VELO
  - BCM
  - Detector Voltage...
  - Spectrometer magnets
- Output
  - Dump request
  - Injection Inhibit

Response time: 100  $\mu$ s to 270  $\mu$ s

### Conclusions

- Planning for sector test and initial commissioning taking shape:
  - http://cern.ch/lhc-injection-test
  - http://cern.ch/lhc-commissioning

Experiments' requests need to be carefully prioritised.

- Protection is being taken very seriously indeed
  - Experiments in the shadow of this but don't take our word for it.

Thanks to Daniela Macina for her input