Physics Landscape Working Group CERN Workshop Summary

Convenors:

Volker Büscher (Freiburg), Bogdan Dobrescu (FNAL), David Rainwater (Rochester), Michael Schmitt (Northwestern)

Outline:

- Experimental Aspects
- Model-independent Analysis
- Models: Case Studies

Goals:

- Review differences between Tevatron and LHC algorithms
- Comparison of performance in LHC MC with Tevatron MC and data
- Inject realism into LHC simulation and analysis

Projects:

- Electrons and Photons (Yuri Gershtein)
- Muons (Carsten Hof, Carsten Magass, Alexey Drozdetskiy)
- Taus (Michael Heldmann, Ingo Torchiani, Volker Büscher)
- Jets and Missing E_T (Shoji Asai, Song Ming Wang, Reiseburo Tanake)
- tracking and b-tagging (Veronique Boisvert)

Please add your name to the list!

Tau Identification in ATLAS and DØ

$\tau\text{-ID}$ at DO and ATLAS

Volker Büscher, <u>Michael Heldmann,</u> Ingo Torchiani

University of Freiburg

- Motivation
- D0
- ATLAS
- preliminary comparison
- summary

Motivation

- At ATLAS we expect a big number of final states involving taus
- Channels using taus
 - $A^0/H^0 \rightarrow \tau \tau$
 - $H^+ \rightarrow \tau \nu$
 - SUSY with production of $\tilde{\tau} \rightarrow \tau + \chi^{0}_{1}$
 - Standardmodell Higgs (VBF qq H \rightarrow qq $\tau \tau$)
 - $Z \rightarrow \tau \tau$ (for comissioning)
 - *τ* are perhaps the only way to access the chiral structure of SUSY
- $\rightarrow \tau$'s are an important signature

Preliminary comparison

- The goal is to understand what difference we can expect from the results in MC to performance with real data
 - We think we can accomplish establishing a chain of understanding
 - ATLAS Algorithm on ATLAS MC \rightarrow D0 Algorithm on ATLAS MC \rightarrow
 - \rightarrow D0 Algorithm on D0 MC \rightarrow D0 Algorithm on D0 data
- Therefor we need to implement all variables D0 uses at ATLAS
- Of course because of differences in the detector design the "translation" of variables is not unambiguous
- our convention:
 - D0 EM3 (finely granulated layer in the EM) \rightarrow ATLAS EM2
 - D0 EM1, EM2 \rightarrow ATLAS eta-strip layer
 - tower granularity in both cases 0.1x0.1
- energy thresholds have to be adjusted

Tau Identification in ATLAS and DØ

Tau Isolation:

Ratio of track p_T and calorimeter E_T :

Width of calorimeter cluster:

Comparison Performance

- I don't shows plots involving non-tau tracks, because D0 uses tracks down to 200MeV, and I have only > 1.5GeV at the moment
- As stated before the results are not really comparable, but just to give some idea
- we had a first look, cutting on the D0 variables for ATLAS
 - iso < 0.2</p>
 - e1e2/ETt > 0.4
 - pT(Trk1)/ET > 0.25
 - EM12isof < 0.3</p>
 - EMRadius < 0.15</p>
 - eff = 56%, R=10.6
- the D0 neural network gives
- NN eff=57%, R=47 or NN eff=36%, R=125
- for comparison the ATLAS LikelihoodRatio shows
 - LLH eff=57%, R=59 or LLH eff=38%, R=334
- these number are normalized to tau-candidates, so they should be corrected for the reconstruction efficiency for the tau-candidates

SUSY @LHC

- 1. Event topologies of SUSY
- 2. SM background processes
- 3. Problem in the current estimation
- 4. Production with ME information
- 5. ME-PS matching
- 6. Results
- 7. Extrapolation for SUSY
- 8. Summary

S.Asai T.Sasaki and J.Tanaka (University of TOKYO)

1.Events topology of SUSY (Gravity- mediation + R-parity)

Gluino/squark are produced copiously, Cascade decay is followed.

Especially no or one lepton mode is promising for Discovery

I HC Point 2 10 No lepton $Z(\nu \nu, \tau \tau) + N$ jets \bigvee mode: $W(\tau \nu) + N$ jets 10 Signal tt + N jets do/dM_{eff} (mb/400 GeV) Mass of sq and gluino 10 QCD multi-jets are 1TeV (Fake-missing Et) One lepton W + N jets 10 -12 mode: tt + N jets $Z(\tau \tau) + Njets$ -13) 10 2000 3000 4000 1000 Mett (GeV) $= E_T + \sum P_T$ But these backgrounds are estimated Up to 4jets with Parton shower model !!!!! High Pt multi-jet also contribute and are underestimaed. to suppress BG. 3

Pt distributions of 3rd jet for Z+ Njets processes

Missing Et > 100GeV At least one jet(parton) has pt > 100GeV At least four jets(partons) have pt>50GeV When the distributions are superimposed, You can see significant difference.

Hard jet is not emitted in Parton Show: (It is famous problem.)

Factor of more then 100 is different.
The same problem is in 2nd,3rd,4th,,,, jets
Jet contribution should be underestimated in current estimations.

TeV4LHC, CERN, April 2005

First detailed study on the CMS SUSY discovery potential with two same sign muons in the mSUGRA model

Salavat Abdullin (FNAL) Darin Acosta (UF) Paolo Bartalini (UF) Rick Cavanaugh (UF) <u>Alexey Drozdetskiy (UF)</u> Andrey Korytov (UF) Guenakh Mitselmakher (UF) Yuriy Pakhotin (UF) Alexander Sherstnev (MSU) Bobby Scurlock (UF)

A number of benchmark scenarios can be discovered with 10 $\rm fb^{-1}$:

Tevatron like-sign dimuon analyses:

- non-negligible instrumental backgrounds:
 - non-isolated muons from $b\bar{b}$
 - mismeasurement of muon charge)
- \rightarrow CMS studies in progress

	Significance		
	SET 1	SET 2	
1	9.05	8.06	
2	20.8	21.4	
3	2	1.44	
4	25	48.4	
5	0.77	0.46	
6	20.6	35	
7	0.78	0.4	
8	15.5	20.5	
9	n/a	n/a	
10	31.7	56.1	
11	12.1	13.4	
12	27.1	28.1	
13	6	4	
14	n/a	n/a	
15	n/a	n/a	
16	n/a	n/a	
17	n/a	n/a	
18	n/a	n/a	
19	25.6	39.8	
20	20.6	34	

Goals:

- Assuming observation of a signal, interpret as Standard Model plus one new particle
- Classify new particles according to spin (gauge bosons, fermions, scalars) and charges
- Study each type of particle, understand signatures and how to disentangle them

Projects:

- Zprimes (Michael Schmitt, Benjamin Trocme, Tim Tait, Bogdan Dobrescu)
- Wprimes (Zack Sullivan, Carsten Hof, Carsten Magass)
- Vectorlike Quarks (Tim Tait, Georges Azuelos)
- TeV-Scale String Resonances (Tao Han, Piyabut Burikham)
- Leptoquarks (Michael Spira, Simona Rolli)
- Gluinos (David Milstead)
- Topgluons, Colorons, ...
- Charged Scalars

- ...

Please add your name to the list!

- Motivations
- Current limits and discovery perspectives
- Discriminating variables at LHC:
 - Natural width and cross section
 - Forward backward asymmetry

F. Ledroit, M. Schaefer, <u>B. Trocme</u> (LSPC Grenoble)

Disentangling Zprimes

The width & leptonic cross sections

0.2 Partial decay widths(light fermions): Br(u) Br(d) 0.18 $\Gamma(Z' \rightarrow f\overline{f}) = N_c \frac{g^2}{\cos^2 \theta_u} \frac{1}{48\pi} (g_V^2 + g_A^2) M$ 0.16 0.14 $10\frac{\Gamma}{M}$ 0.12 0.1 Width / branching ratios variations 0.08 . in E6 models (assuming no exotic 0.06 0.04 decays) Br(e) 0.02 $Br(\nu_e)$ -0.5 -1 0.5 n Resonance shape for several models $\sin \theta$ Z' 1.5TeV (arbitrary normalization) SSIV 10⁴= -psi chi -eta Problem : total width altered if Z' -LR 10³ -DY decays in invisible particles (gauginos by e.g.) 10

10

1200

1400

1600

1800

2000

2200 MII

ightarrow Consider instead the product :

 $\sigma_{\parallel} \times \Gamma$

Disentangling Zprimes

The width extraction in Atlas

- Analytical fit of di-electron mass: $f(M_{II}) = \frac{a_{BW}M^2\Gamma^2}{(M_{II}^2 M^2)^2 + M^2\Gamma^2} \times e^{-c_{int}M_{II}} + a_{DY}e^{-c_{DY}M_{II}}$
- Example : η model ($M_{Z'}$ = 1.5TeV $\Gamma_{Z'}$ = 9.5GeV)

The product $\sigma_{\parallel} \times \Gamma$

7 		$\sigma_{ll}^{gen}(\mathrm{fb})$	$\sigma_{ll}^{rec}(fb)$	$\sigma_{ll}^{rec} \times \Gamma_{rec}(\text{fb.GeV})$
	SSM	$78.4{\pm}0.8$	$78.5{\pm}1.8$	$3550{\pm}137$
	ψ	$22.6{\pm}0.3$	$22.7{\pm}0.6$	$166{\pm}15$
$M = 1.5 \mathrm{TeV}$	χ	$47.5{\pm}0.6$	$48.4{\pm}1.3$	$800{\pm}47$
	η	$26.2{\pm}0.3$	$24.6 {\pm} 0.6$	$212{\pm}16$
	LR	$50.8{\pm}0.6$	$51.1{\pm}1.3$	1495 ± 72
$M = 4 \mathrm{TeV}$	SSM	$0.16{\pm}0.002$	$0.16 {\pm} 0.004$	$19{\pm}1$
	KK	$2.2{\pm}0.07$	2.2 ± 0.12	331 ± 35

Promising discriminating potential (independent on potential invisible decays).

Disentangling Zprimes

The forward backward asymmetry : the potential

 Typical spin 1 particle behaviour (Z' may also have spin 2 in different models : warped extra dimensions by e.g. Not considered here) :

$$\frac{d\sigma}{d\cos\theta^*} \propto \frac{3}{8} \left(1 + \cos^2\theta^*\right) + A_{FB}\cos\theta^*$$

 Asymmetry at generation level for several models with M₇ = 1.5 TeV

The A_{FB} extraction in Atlas

- A_{fb} is deduced with the "ratio" method :
 - Compute A_{FB} (cos θ) by the basic counting method (N⁺- N⁻/N⁺+N⁻) in several bins of cosθ
 - Extract A_{FB} by fitting $A_{FB}(\cos\theta) = \frac{8}{3}A_{FB} \times \frac{\cos\theta}{1+\cos^2\theta}$
- Example : χ model at $M_{Z'}$ = 1.5TeV (1.48TeV (M || (1.52TeV))

Disentangling Zprimes

The A_{FB} extraction in Atlas (2)

The results for all models in the central mass bins

Model	$\int \mathcal{L}(fb^{-1})$	Generation	Observed	Corrected
$1.5{ m TeV}$			50 	
SSM	100	$+0.088 \pm 0.013$	$+0.060 \pm 0.022$	$+0.108 \pm 0.027$
X	100	-0.386 ± 0.013	-0.144 ± 0.025	-0.361 ± 0.030
η	100	-0.112 ± 0.019	-0.067 ± 0.032	-0.204 ± 0.039
η	300	-0.090 ± 0.011	-0.050 ± 0.018	-0.120 ± 0.022
ψ	100	$+0.008 \pm 0.020$	-0.056 ± 0.033	-0.079 ± 0.042
ψ	300	$+0.010 \pm 0.011$	-0.019 ± 0.019	-0.011 ± 0.024
LR	100	$+0.177 \pm 0.016$	$+0.100 \pm 0.026$	$+0.186 \pm 0.032$
$4\mathrm{TeV}$				
SSM	10000	$+0.057 \pm 0.023$	-0.001 ± 0.040	$+0.078 \pm 0.051$
KK	500	$+0.491 \pm 0.028$	$+0.189 \pm 0.057$	$+0.457 \pm 0.073$

- Systematic error associated to ε lower then 10%.
- Possible to precisely measure the forward backward asymmetry in Atlas:
 - ε correction works well.
 - method remains efficient even far away from the resonance with a reduced statistic (not shown here).
 - very promising discriminating potential (especially when including analysis of all mass bins - cf slide 9).

$\begin{array}{l} \mathcal{PROSPINO} \ \mathcal{AND} \ \mathcal{LEPTOQUARKS}: \\ \mathcal{FROM} \ \mathcal{TEV}. \ \mathcal{TO} \ \mathcal{TEV} \end{array}$

Michael Spira (PSI)

- I PROSPINO
- II Leptoquarks
- **III** Conclusions

in collaboration with W. Beenakker, M. Krämer, T. Plehn and P. Zerwas

Krämer, Plehn, S., Zerwas

Krämer, Plehn, S., Zerwas

Beenakker, Krämer, Plehn, S., Zerwas

Goals:

- For more complex signals (cascades, production of multiple particles), check if consistent with various models
- Large number of models, phenomenology depends on free parameters \rightarrow case studies

Projects:

- SUSY
 - mSUGRA (Alexander Belyaev, Tadas Krupovnickas)
 - MSSM (Howie Baer, Georg Weiglein, Csaba Balazs)
 - NMSSM (Sabine Kraml, Cyril Hugonie)
 - Stops (Sabine Kraml, Joe Lykken, Shoji Asai)
 - Disentangling Models (Dirk Zerwas et al. (SFITTER), Bob Kehoe, Gordon Kane)
 - Tools (Michael Spira (PROSPINO), Peter Skands (SLHA))
- Universal Extra Dimensions (Kyoungchul Kong, Konstantin Matchev, Satya Nandi)
- Signal Generators and tools for Extra Dimensions (Albert de Roeck et al.)
- Little Higgs Models with T-Parity (Jay Hubisz)
- Technicolor (Ken Lane)
- Higgsless Models (Andreas Birkedal)

Please add your name to the list!

SUSY searches: where Tevatron may help LHC analyses

SABINE KRAML

CERN PH-TH

(APART Fellow of the Austrian Academy of Sciences)

TEV4LHC workshop, CERN, 28-30 April 2005

Light Stop

Motivation: sufficiently strong first order phase transition to preserve generated baryon asymmetry

 $m_h \lesssim 120 \; {
m GeV}$ $m_{ ilde t_1} \lesssim 165 \; {
m GeV}$ moderate $aneta \sim 5$ [Carena, Quiros, Wagner, 1998]

NB: Right Ωh^2 from $\tilde{\chi}_1^0 \tilde{t}_1$ coannihilation: $m_{\tilde{t}_1} - m_{\tilde{\chi}_1^0} \sim 30$ GeV. Otherwise other contributions from e.g. light sleptons needed.

TeV4LHC SUSY

$ilde{t}_1$ rates and signatures

- Large rate of $p \bar{p}
 ightarrow ilde{t}_1 ilde{t}_1$
- Other modes: $ilde{t}_1 o b ilde{\chi}_1^\pm, \ b W ilde{\chi}_1^0, \ b l ilde{
 u}$
- If gluino mass $\sim 300-400$ GeV: $p\bar{p} \rightarrow \tilde{g}\tilde{g} \rightarrow tt \,\tilde{t}_1\tilde{t}_1$ ca. 50% of SUSY cross section

[Plehn, Spira]

- Possible discovery channel at Tevatron
- At LHC: $pp \to \tilde{g}\tilde{g} \to tt \ \tilde{t}_1\tilde{t}_1, pp \to \tilde{g}\tilde{b} \to tW\tilde{t}_1\tilde{t}_1, ...$ VERY difficult if stop is light

TeV4LHC SUSY

Tevatron reach for $ilde{t}_1 o c ilde{\chi}_1^0$

[Balazs, Carena, Wagner, hep-ph/0403224]

 $BR(B_s \rightarrow \mu \mu)$

- Present bound: ${\sf BR}(B_s o \mu^+ \mu^-) < 5.8 imes 10^{-7}$
- SM prediction: ${\sf BR}(B_s o \mu^+ \mu^-) = (3.4 \pm 0.5) imes 10^{-9}$
- In SUSY, the $B \to \mu \mu$ branching ratio grows like $\tan^6 \beta$, orders of magnitude enhancement, BR $\sim 10^{-7}$ for $\tan \beta = 50$
- If deviation from SM prediction observed at the Tevatron:
 * large tan β interpretation in SUSY *
- Consequence: expect many *τ*'s in SUSY decay chains at Tevatron and LHC → optimize *τ* identification, want good *τ* energy and polarization measurements, etc.

TeV4LHC SUSY

$BR(B_s \rightarrow \mu \mu)$

[Dedes, Dreiner, Nierste, hep-ph/0108037]

SFITTER: Impact of TeVatron data

Remi Lafaye, Tilman Plehn, Dirk Zerwas CERN and LAPP, MPI Munich, LAL Orsay

> TeV4LHC Workshop CERN April 29, 2005

- Introduction
- SPS1a
- Some scenarios
- Conclusions

Examples of measurements at LHC

Gjelsten et al: ATLAS-PHYS-2004-007/29

	Edge	Nominal Value	Fit Value	Syst. Error	Statistical
	0			Energy Scale	Error
<	$m(ll)^{ m edge}$	77.077	77.024	0.08	0.05
	$m(qll)^{cdge}$	491.1	401.0	4.5	2.4
	$m(ql)_{\min}^{\text{edge}}$	302.1	300.8	3.0	1.5
	$m(ql)_{\max}^{\text{edge}}$	380.3	379.4	3.8	1.8
	$m(qll)^{\rm thres}$	203.0	204.6	2.0	2.8
	$m(bll)^{\text{thres}}$	183.1	181.1	1.8	6.3

plus other mass differences and edges...

From edges to masses: System overconstrained

SUSY Fits in Tevatron and LHC Data (SFITTER)

SPS1a

 $m_0 = 100 \text{GeV} \quad m_{1/2} = 250 \text{GeV} \quad A_0 = -100 \text{GeV} \quad \tan\beta = 10 \quad \text{sign}(\mu) = +$ favourable for LHC and ILC (Complementarity)

SUSY Fits in Tevatron and LHC Data (SFITTER)

LHCmax scenario:

all LHC measurements are available
10fb-1 (2008): statistical error ~ factor sqrt(30)
systematic (e-scale) ~ factor 5.4
(5‰ lepton e-scale, 5% jet e-scale)
top mass measurement from TeVatron

currently ± 4GeV
extrapolated begin of LHC ± 2GeV

using the masses

mtop = 175GeV	mtop = 179 GeV	mtop = 171GeV
$m0 = 100 \pm 22 \text{ GeV}$	$m0 = 99 \pm 22 GeV$	$m0 = 102 \pm 22 \text{ GeV}$
$m_{1/2} = 250 \pm 9 \text{ GeV}$	$m_{1/2} = 249 \pm 9 \text{ GeV}$	$m_{1/2} = 250 \pm 9 \text{ GeV}$
$\tan\beta = 10 \pm 6$	$\tan\beta = 7.4 \pm 3$	$\tan\beta = 13.7 \pm 9$
$A_0 = -100 \pm 181 \text{ GeV}$	$A_0 = -22 \pm 226 \text{ GeV}$	$A_0 = -174 \pm 145 \text{ GeV}$

top mass precision 4GeV:

- m₀, m_{1/2} unaffected
- tan β and A_0 shifted by up to 1σ

top mass precision 2GeV: • shift reduced to less than 0.7σ

No surprise: less information, less precision, even for mtop 4GeV error negligeable effect given the errors

LHCminimal plus Higgs scenario:

- Higgs is sitting on the edge of LEP exclusion
- WH+ZH 6 events per fb-1 and experiment
- end of Run: $\Delta m_h = \pm 2 \text{GeV}$
- adding background: $\Delta m Higgs = \pm 4-5 GeV$
- minimal scenario LHC

plus TeVatron Higgs hint of 4.5GeV precision:

No Higgs, edges from the LHC:Higgs hint plus edges from the LHC: $m_0 = 100 \pm 14 \text{ GeV}$ $m_0 = 100 \pm 9 \text{ GeV}$ $m_{1/2} = 250 \pm 10 \text{ GeV}$ $m_{1/2} = 250 \pm 9 \text{ GeV}$ $\tan\beta = 10 \pm 144$ $\tan\beta = 10 \pm 31$ $A_0 = -100.37 \pm 2400 \text{ GeV}$ $A_0 = -100 \pm 685 \text{ GeV}$

A Higgs hint mass measurement would lead to an improvement of m₀, tanβ and A₀ (but the latter two are still essentially undetermined)!

- Community has a strong interest in landscaping
- A number of experimental and phenomenological projects in progress
- Many fruitful discussions and collaboration between experiment/theory as well as Tevatron/LHC
- Now aiming at producing a summary document that will hopefully be useful for the LHC era