Vector boson+jets production at DØ

Avto Kharchilava University of Notre Dame

For the DØ Collaboration

CERN, 29 April 2005

TeV4LHC

Outline

- Introduction
 - Motivation
 - Jet algorithms
- W + jets production
 - Kinematics properties
 - W + bb
- Z + jets production
 - $-\sigma(Z + \ge n \text{ jets})/\sigma(Z)$
 - Z + b-jets
 - $\sigma(Z+b)/\sigma(Z+j)$ ratio
- Summary

Upgraded DØ detector in Run II of the Tevatron

W/Z + jets production

- A laboratory to test QCD predictions
 - W/Z + n jets rate ~ α_s^n in lowest order
 - Perturbation theory should be reliable
 - Heavy boson ↔ large scale
- Important backgrounds for other physics
 - Top, Higgs, New phenomena
- Items to study
 - Rates, differential distributions, flavor composition
- Compare to theory
 - NLO/MCFM calculations available up to 2 jets
 - Variety of multi-parton generators based on LO ME calculations
 - How to combine them with PS generators and avoid "double counting" ?
 - Various prescriptions, MLM, CKKW, SHERPA

Jet definitions in Run II

- Run I cone algorithm
 - Add up towers around a "seed"
 - Iterate until stable
 - Jet quantities: E_T , η , ϕ
- Improvements for Run II
 - Use 4-vector scheme, p_T instead of E_T
 - Add midpoints of
 - jets as additional starting seeds
 - Infrared safe

- Correct to particles
 - Underlying event, previous/extra interactions, energy loss out of cone due to showering in the calorimeter, detector response, resolution
- Results in the following are for $R_{cone} = 0.5$

Data sets

$W(\rightarrow ev)$ + jets production (1)

- Event selection include
 - Isolated e, $p_T > 20$ GeV, $|\eta| < 1.1$
 - Missing $E_T > 25 \text{ GeV}$
 - − ≥ two jets: E_T > 20 GeV, $|\eta|$ < 2.5
- 2567 evts (2670 \pm 838 expected)

- Simulations with Alpgen plus Pythia through detailed detector response
- Cross sections normalized to MCFM NLO calculations

6

$W(\rightarrow ev)$ + jets production (2)

• Untagged sample

Data and MC agree within JES uncertainties

Good overall understanding of data

$W(\rightarrow ev)$ + jets/bb: angular correlations

- Correlations between leading two jets in ΔR a measure of distance in η – ϕ space
 - Sensitive to parton radiation processes
 - Reduced sensitivity to jet energy scale

W + \geq 1 b-tagged jet

Again, good agreement between data and MC

W + bb cross section limit

- σ(Wbb) < 6.6 pb @ 95% C.L.
 - p_{T} > 15 GeV, $|\eta|$ < 2.5 and $\Delta R(bb)$ > 0.75
 - Will measure soon

- Observe 6 events
- Expect a total of 4.4 ± 1.2 evts. - 1.7 ± 0.4 evts. of Wbb

Z/γ^* + jets

- Cross section ratio measurement
 - $L_{int} = 343 \text{ pb}^{-1}$
 - Electron channel
- Selection
 - Vertex |z| < 60 cm
 - Electrons
 - $p_T > 25 \text{ GeV}, |\eta| < 1.1$
 - Shower shape
 - Isolation
 - At least one track matched
 - 75 < M_{ee} < 105
 - Jets
 - $p_T > 20 \text{ GeV}, |\eta| < 2.5$
 - JES corrected
 - Electron-jet separation $\Delta R > 0.4$
- 13,893 inclusive Z candidate evts.

- Comparison with Alpgen plus Pythia showering
 - Generator cuts: parton $p_T > 8 \text{ GeV}$, $\Delta R > 0.4$
 - No matching
 - Full simulation

Acceptance and scale factors

- Electron trigger, reconstruction*ID efficiency
 - Use "tag-and-probe" method
- Jet reconstruction*ID efficiency
 - In data, look for jets balancing Z
 - Measure efficiency as function of Z $\ensuremath{\mathsf{p}_{\mathsf{T}}}$
 - Do the same in MC
 - Derive data vs MC scale factor
- Dependence on jet multiplicity
 - $Z/\gamma^* + \ge 0j$
 - Pythia reweighted to reproduce Z p_T in data

- Den: Z/γ^* (75 < M_{ee} < 105 GeV)

- Num: those with two electrons $p_T > 25$ GeV, $|\eta| < 1.1$, |pvz| < 60 cm
- $Z/\gamma^* + \ge nj$
 - Alpgen Z + n jets sample.
 - − Den: Z/γ^{*} (75 < M_{ee} < 105 GeV) + ≥n particle jet (p_T > 25 GeV, |η| < 1.1)
 - Num: those with two electrons $p_T > 25$ GeV, $|\eta| < 1.1$, |pvz| < 60 cm
- Acceptance of 21 to 30% depending on jet multiplicity

Background calculation

- Estimated from M_{ee} spectrum
 - Relative Drell-Yan continuum contribution from MC
 - Assume flat distribution for the bkgd.
 - Fit by Breit-Wigner convoluted with Gaussian + exponential function
 - For higher jet multiplicities measure from side band
- Background varies from 2 to 5% depending on the jet multiplicity

Corrections to inclusive jet multiplicity spectrum

- "Unsmearing" to correct for bin-to-bin migration due to
 - Jet energy resolution
 - Jet reconstruction*ID efficiency
- Derived using Pythia at particle level
 - No detector simulation
 - Apply data resolution smearing and reconstruction*ID efficiency
 - First reweight Pythia events such that smeared MC distribution agrees with data
- Electron-jet overlap correction
 - Accidental overlap between jet and electron must be accounted for
 - 6 to 10% correction depending on nj
- Jet promotion due to multiple interactions
 - Measured in data, effect is small

Ratio applied to "unsmear" data

$\sigma(Z/\gamma^* + \ge n \text{ jets}) / \sigma(Z/\gamma^*)$ ratio

Cross section ratios:

Systematics dominated by uncert. on JES & jet reco*ID eff.

Multiplicity ($\geq n$ jets)	$R_n = \frac{\sigma_n}{\sigma_0} \left[\times 10^{-3} \right]$	Statistical Uncertainty $[\times 10^{-3}]$	Systematic Uncertainty $[\times 10^{-3}]$
1	119.1	± 3.3	+17.2 / -16.2
2	18.1	± 1.3	+4.5/-4.3
3	2.6	± 0.52	+0.90 / -0.89
4	0.61	± 0.28	+0.29 / -0.27
5	0.42	± 0.30	+0.42 / -0.24

$Z(\rightarrow ee/\mu\mu)b$ associated production

- Motivation
 - Benchmark for SUSY Higgs boson production via gb→bh
 - Probes PDF of the b-quark
 - Background to ZH production
- Examples of ZQ (Zj) LO diagrams

- Measure cross section ratio
 - > σ(Z+b)/σ(Z+j)
 - Many uncertainties cancel

- Data correspond to integrated lumi. of 184 (ee), 152 (μμ) pb⁻¹
- Event selection include
 - Isolated e/µ: $p_T > 15/20 \text{ GeV}$ $|\eta| < 2.5/2.0$
 - Jet $E_{_T}$ > 20 GeV, $|\eta|$ < 2.5
 - At least one b-tagged jet
 - Z peak for signal, side bands for bkgd. evaluations
- Simulations performed with Pythia or Alpgen plus Pythia passed through detailed detector response
- Cross sections normalized to data
- Relative b- and c-quark content as given by MCFM NLO calculations

Method

 $N_{\text{before b-tag}} = t'_b N_b + t'_c N_c + t'_\ell N_\ell \quad N_{\text{b-tagged}} = \bar{\epsilon}_b t'_b N_b + \bar{\epsilon}_c t'_c N_c + \bar{\epsilon}_\ell t'_\ell N_\ell$

Z + ≥1 b-tagged jet

- Apply sec. vertex b-tag
 - 42 events with \geq 1 tag
 - 8.3 evts. from QCD bkgd.
 - Estimated from sidebands

- Disentangle light, c, b contributions
 - Use light and b-tagging efficiency from data
 - c-tagging efficiency from MC and scaled for data/MC difference in btagging
 - N_c=1.69N_b from theory
- Cross checks with
 - Soft lepton tagging
 - Impact parameter tagging

σ (Z+b)/ σ (Z+j) ratio

• Decay length significance of sec. vertices in transverse plane for btagged jets

Heavy flavor component in b-tagged candidate events is clearly seen !

Measure cross section ratio Z+b/Z+j

 $0.021 \pm 0.004 \text{ (stat)} + 0.002 \text{ (syst)} - 0.003 \text{ (syst)}$

• Prediction: 0.018±0.004

J.Campbell, R.K.Ellis, F.Maltoni, S.Willenbrock, Phys. Rev. D69 (2004) 074021

• Systematics studies

Source	Uncertainty	
(dominant)	(%)	
Jet energy scale	+5.8 -6.9	
Bkgd. estimation	+5.7 -5.2	
Jet tagging	+4.6 -5.1	
Z+(QQ) vs Z+QQ	+1.7 -5.4	
σ(Z+c)/σ(Z+b)	+2.8 -2.8	
Total	+10.4 -11.8	

PRL 94, 161801 (2005) 19

Summary

- DØ is taking full advantage of Run II upgrade
- Have first results on W/Z + jets production, including b-jets. Some are unique
- More analyses with W/Z + jets are in the works, including detailed comparisons of event kinematics to various Monte Carlo predictions