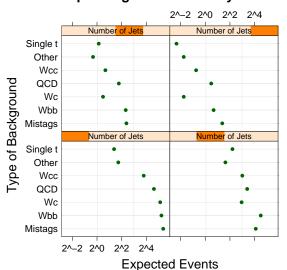

W/Z + Jets from Theory The Story So Far

Stephen Mrenna

Computing Division Fermilab

Understanding W+Jets is Critically Important


- Signature $Wb\bar{b} + X$ is common to unconfirmed Standard Model processes and many new physics processes
- we "know" that Standard Model top is there $\mathsf{Top} \equiv \mathsf{Data} \mathsf{Not}\text{-}\mathsf{Top}$
- As JES uncertainty is reduced (CDF m_t), understanding of Not-Top sets/limits understanding of Top
- Advanced (i.e. NN, DT) search techniques for single t exploit differences in many (11) kinematic variables
- Not-Top challenges our tools

Better tools \Rightarrow more challenging questions

Not-Top Cocktail CDF PRD, 162 ipb

Top Background Summary

Complicated Structure

 $t\bar{t}$ contamination in Njets=3,4 (1.0,1,3)

work on Mistags, Wbb, QCD

QCD, Mistags reducible

trust basic properties of B,D hadron decays, e.g. K mesons

3 / 20

Mixing the Cocktail

Method 2

Monte Carlo ratio

$$R = (W + b - jets)/(W + jets)$$

Common factors cancel

Measure W + jets (no b-tag)

$$data(W + b - jets) = R \times data(W + jets)$$

Wcj/Wbb from Monte Carlo

Several R's

Tools

- Tree—Level (MadGraph, Alpgen, etc.)
- Parton—shower (Pythia, Herwig, etc.)
- NLO-Level (MCFM, etc.)
- Combinations of these

4 / 20

Matrix Elements + Parton Showers

MLM Method

Parton shower and hadronization are essential for studying b-jets

- Parton shower W+Npartons but reject emissions that are too hard (i.e. each post-shower jet should have a pre-shower parton associated with it)
- Build up inclusive or exclusive samples (i.e. allow or disallow pure PS jets)
- $\delta R/R \sim 25 30\%$

Heavy Flavor (HF)

LEP, Run1 \Rightarrow PS underestimates HF PS inefficient in generating HF

- $P_{qq}(z) = \frac{1}{2}(z^2 + (1-z)^2)$ no soft $(z \to 0)$ enhancement subleading log in PS
- Use ME with $b\bar{b}$ explicit Remove additional HF from PS
- *R* supplemented by phenomenological factor 1.5

Method 2 at Tree Level

Madevent (Stelzer and Maltoni)

X-Check	
Graph	Cross Sect(fb)
Sum (Wbb)	8.934
Sum (Wjj)	1061.627
ug→e ⁺ v _e dg	327.810
$u\bar{d}{ ightarrow}e^+v_egg$	257.060
$g\bar{d}\rightarrow e^+v_e\bar{u}g$	137.300
$\bar{d}g \rightarrow e^+ v_e \bar{u}g$	48.591
uū→e ⁺ v _e ūd	47.425
$u\bar{d}\rightarrow e^+v_ed\bar{d}$	36.644
gu→e ⁺ v _e dg	34.445
ud→e ⁺ v _e uū	29.816

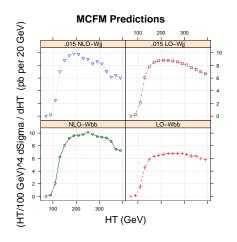
 $90 < M_{ii} < 110$ GeV, standard jets

$$R \times 1.5 = 1.3\%$$
 (MLM = 1.4%)

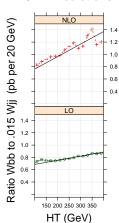
 \bullet $\langle R \rangle$ roughly the same

Many different topologies

Dominant ones not $q\bar{q}$


ullet again, no $z \to 0$ enhancement

Different topologies parton shower and hadronize differently


Many effects have to be modelled well to have a reliable prediction

MCFM Campbell and Ellis (see also Campbell & Huston)

MCFM Predictions



Significant change in normalization and shapes LO \Rightarrow NLO

Matrix Element-Parton Shower Matching

SM, PR JHEP 0405:040,2004, SM, JH, JC in progress

Testing Different Predictions

- Matching scheme needed to make inclusive predictions with hard emissions
- Pseudoshower Method (ME-PS) reweights matrix elements to look like parton showers where they should. Motivated by Catani et al., but more flexible and tuned to Pythia, Herwig, etc.

Review of Matching

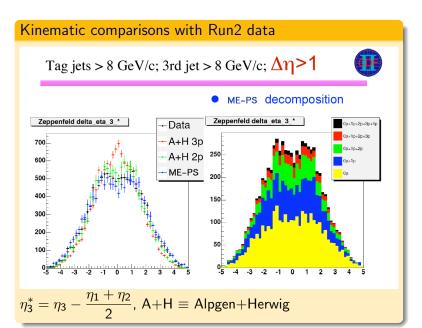
Pseudo-Shower Method

- **1** Generate W + N parton events, applying a cut $p_{T_{cut}}^2$ on shower p_T^2 (p_T^2 for ISR, $z(1-z)m^2$ for FSR)
- 2 Form a p_T^2 -ordered parton shower history
- **3** Reweight with $\alpha_s(p_T^2)$ for each emission
- 4 Add parton shower and keep if no emission harder than $p_{T cut}^2$: (save this event)
- **3** Remove softest of N partons, fix up kinematics, add parton shower and keep if no emission harder than $p_{Tsoftest}^2$
- 6 Continue until no partons remain, or an emission is too hard
- 1 If not rejected, use the saved event

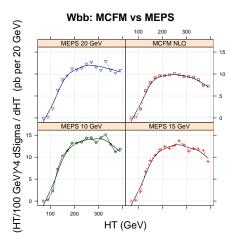
Why it works

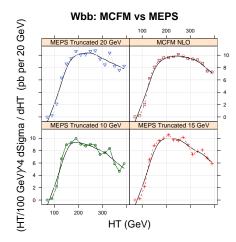
- For each N, PS does not add any jet harder than $p_{T_{cut}}^2$
- Can safely add different N samples with no double-counting
 - Apply looser rejection on highest N
- Pseudo-showers assure correct PS limit, while retaining hard emissions
 - Interpolates between limits

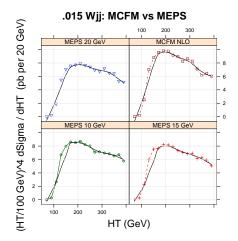
bb Modifications


- Apply no cuts on $b\bar{b}$ pair in ME
 - Efficient generation of HF
 - "exact" kinematics
- When bb pair is removed from PS history, skip the pseudoshower
 - ME entirely (no Sudakov)
- Use $\alpha_s \left(\frac{1}{4}m^2\right)$ for weight

Cross check on Run2 data $+ \ge n$ **jets** $) / \sigma_{Z_{i\gamma}}$ DØ Run II Preliminary \mathbb{Z}/γ^* ($\rightarrow e^+e^-$) + $\geq n$ jets, 343 pb⁻¹ Jets: $p_{\tau} > 20 \text{ GeV}, |\eta| < 2.5$ Data (errors: stat + sys) 10⁴ MCFM (CTEQ6M) 10⁻⁵ ME-PS (CTEQ6L) Multiplicity (≥n jets) Includes up to Zjjj, j = q, g

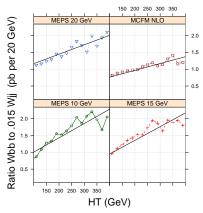





Matched Datasets have a systematically larger rate and different shape

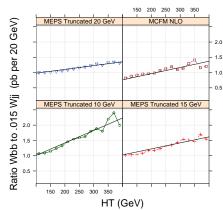
Truncated Datasets contain only $Wb\bar{b} + Wb\bar{b}j$

HO topologies modify shape


Wjj Matched Datasets have less variation with cutoff

Matched normalization here is smaller (no skipped Sudakov)

Stiffer shape (HO topologies)



MCFM vs MEPS

Matched Datasets have consistently steeper slopes (note: MCFM steeper than LO)

MCFM vs MEPS

Truncated Datasets contain only $Wb\bar{b} + Wb\bar{b}i$

Slopes more consistent with MCFM

Conclusions

We need to understand Not-Top

- MCFM and Matched ME-PS predictions allow us to study methods for determining the ratio R = Wbb/Wjj
- MCFM already indicated a stiffer dR/dH_T spectrum than "standard" matching methods

Campbell and Huston, confirmed here

- Pseudo-shower predictions are significantly stiffer than MCFM Topologies up to $Wb\bar{b}jjj$ are included and affect the dR/dH_T tail
- Many questions remain
 - Which distributions are the most important for testing different predictions?
 - Is there a kinematic difference between the different components of Not-Top? Can we discriminate *Wbb*, *Wjj* and *Wcj*?

Extra Slides

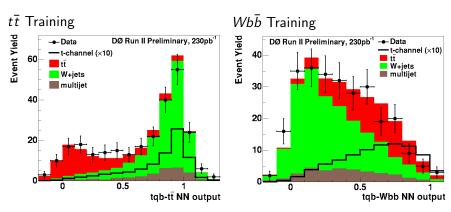
Improved Search for Single Top Quark Production at DØin Run II
http://www-d0.fnal.gov/Run2Physics/top/public/winter05/singletop/

95% Confidence Level Expected/Measured Upper Limits (after final selections, with systematics, using Bayesian statistics)

`	,	,	0)	,
		s-channel	t-channel	
Cut-Based	Electron	11.4/10.8	15.1/17.5	
	Muon	13.0/15.2	18.1/13.0	
	Combined	9.8/10.6	12.4/11.3	
Decision Trees	Electron	6.9/7.9	9.3/13.8	
	Muon	7.3/14.8	10.9/7.9	
	Combined	4.5/8.3	6.4/8.1	
Neural Networks	Electron	7.0/7.3	8.8/7.5	
	Muon	7.0/8.7	9.5/7.4	
	Combined	4.5/6.4	5.8/5.0	

Single Top

New Physics Warm-Up


- current state of single-Top is where we will be at the LHC with a few quality fb⁻¹
- the size of other NP signals
- it is a playground for new analysis techniques
- it challenges our tools

Not specific to NN analyses: may be more sensitive Many (11) Kinematic Variables

	Signal-	Backg	round F	airs	
	tb	tb		tqb	
	Wbb	tŧŧ	Wbb	$t\bar{t}$	
Individual object kinematics					
$p_T(jet1_{tagged})$	√	√	√	_	
$p_T(\text{jet1}_{\text{untagged}})$	_	_	√	√	
$p_T(\text{jet2}_{\text{untagged}})$	_	_	_	-√	
$p_T(\text{jet1}_{\text{nonbest}})$	√	√	_	_	
$p_T(\text{jet2}_{\text{nonbest}})$	√	✓	_	_	
Global event kinematics					
$M_T(jet1, jet2)$	√	_	_	_	
$p_T(\text{jet1}, \text{jet2})$	√.	_	√,	_	
M(alljets)	√	V	√.	√	
$H_T(alljets)$	_	_	√	_	
$M(\text{alljets} - \text{jetl}_{\text{tagged}})$	_	-	_	√	
$H(alljets - jet1_{tagged})$	_	√	_	- √	
$H_T(\text{alljets} - \text{jet1}_{\text{tagged}})$	_	_	_	√	
$p_T(\text{alljets} - \text{jet1}_{\text{tagged}})$	_	√.	_	-√	
$M(\text{alljets} - \text{jet}_{\text{best}})$	_	√,	_	_	
$H(\text{alljets} - \text{jet}_{\text{best}})$	_	√,	_	_	
$H_T(\text{alljets} - \text{jet}_{\text{best}})$		V,		_	
$M(top_{tagged}) = M(W, jet1_{tagged})$	√,	V	√		
$M(top_{best}) = M(W, jet_{best})$	V.	_	_		
√ŝ	√	_	√	V	
Angular variables	,		,		
$\Delta R(\text{jet1, jet2})$	√	_	V,		
$Q(lepton) \times \eta(jet1_{untagged})$		_	V	V	
$cos(lepton, Q(lepton) \times z)_{top_{best}}$	√	_			
cos(lepton, jet1 _{untagged})top _{tagged}	_	_	V,		
cos(alljets, jetl _{tagged}) _{alljets}	_	-,	√	V	
cos(alljets, jet _{non best}) _{all jets}			_	_	

Network Outputs

- How do we convince ourselves of a signal?
- How can we improve upon the search?

