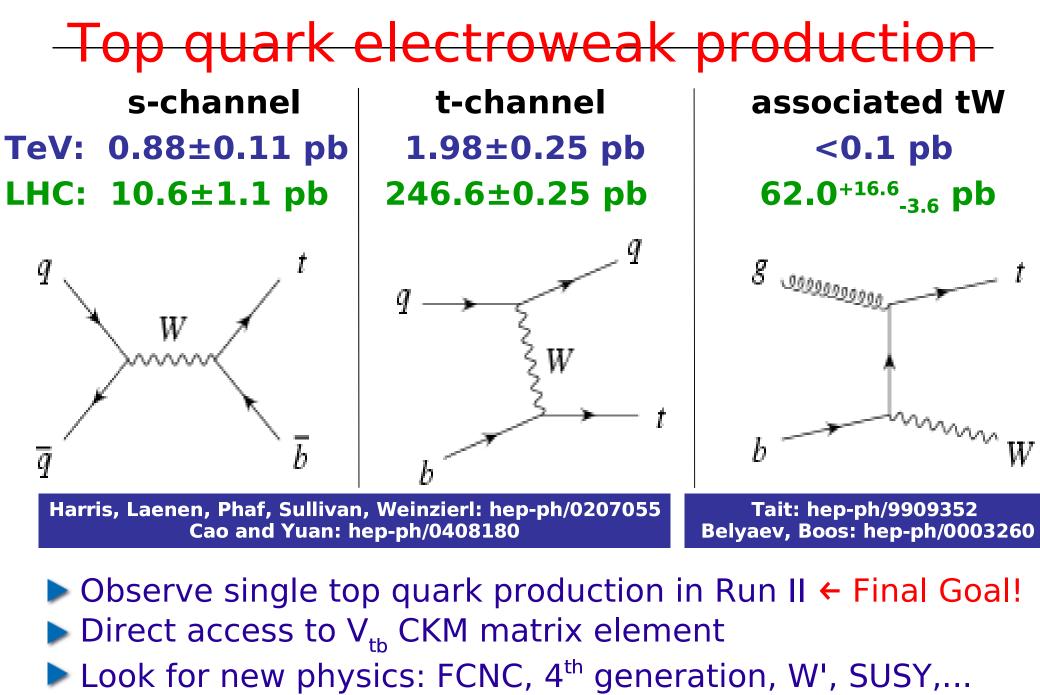

TeV4LHC Workshop CERN, April 28–30, 2005

Top/Electroweak WG – Summary


Conveners:

Cecilia Gerber (D0), gerber@fnal.gov Pavel Murat (CDF), murat@fnal.gov Evelyn Thomson (CDF), thomsone@fnal.gov Tim Tait (Theory, Top), tait@anl.gov Doreen Wackeroth (Theory, EW), dow@ubpheno.physics.buffalo.edu Webpage: www.hep.anl.gov/tait/tev4lhc/topew.html

Single Top Production

E.Boos, M.Bowen, Q.–H.Cao, K.Ellis, S.Ellis, A.Garcia-Bellido, A.Giammanco, A.Juste, A.Lucotte, R.Schwienhorst, Z.Sullivan, G.Watts, and collaborators

- Direct V_{tb} measurement
- Searches for/bounds on physics beyond the Standard Model
- Important background to Higgs searches
- Measurement of *b* quark PDF (non-standard Higgs searches)
- Good testing ground for sophisticated analysis techniques, e.g., multivariant techniques, NN
- Will probe our understanding of important backgrounds, such as W+jets
- Tevatron: Impressive improvement in bounds on single top cross section since the last meeting ...

Probe W+jets understanding and help SM higgs searches

Summary and next steps

95% CL Measured Upper Limits in pb

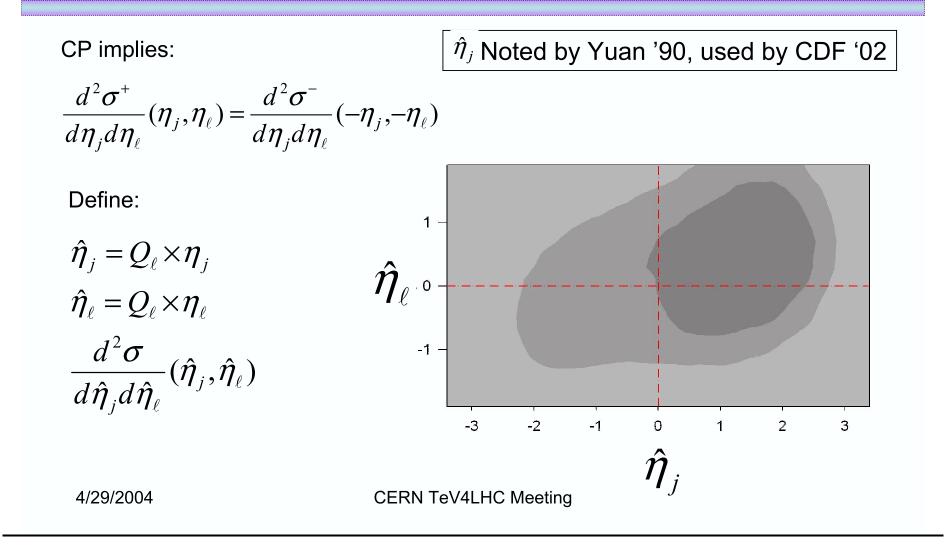
	s-channel	t-channel
$DOR Run I, 90 pb^{-1}$	17	22
CDF Run II, 162 pb^{-1}	13.6	10.1
DØ Run II , 230 pb^{-1} cuts	10.6	11.3
DTs & binned likelihood	8.3	8.1
NNs & binned likelihood	6.4	5.0
NLO theory	=0.88	=1.98

Current analyses need a few fb⁻¹ for observation

Upgrade to improved b-tagging Explore multivariate methods: Kinematic fitter, Neural Network, Matrix Element, optimized likelihoods

Optimizing current analyses Increasing acceptance Improving object ID New methods under study

Increased dataset!


talk by M.Bowen

What can be done?

- 1. Our group's original goal: find a different method of reducing tt than jet veto
- 2. Found such a method, based on parityasymmetries
- 3. Realized W+jets was major background
- Technique appears to work moderately well for W+jets, but systematics are worrisome

talk by M.Bowen

$\eta_i - \eta_l$ Plot for t-channel

talk by M.Bowen

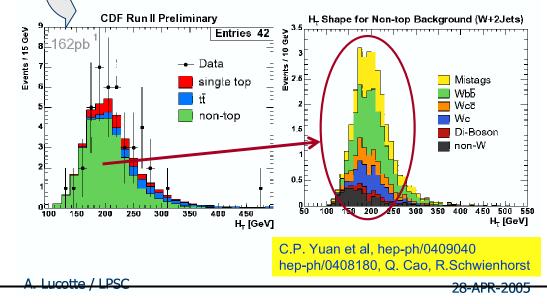
Tev4LHC Conclusions

- tt and QCD are "special" backgrounds symmetric at each collider
- W+jets is THE problem for single top quark searches at both colliders
- Parity asymmetries can help the challenging search at Tevatron for single top quarks
- Charge asymmetries at the LHC make the single top quark signal readily observable in both single-tag and double-tag samples

Perspectives

Single-top Measurements

• Single-top analyses :


talk by A.Lucotte (ATLAS)

- Performed with LO generator
 - \rightarrow NEED to switch to NLO (for S and B)
- Performed with Fast Simulation
 - → Need to use FullSim

TeVatron Contribution...

- Knowledge of main backgrounds
 Use of tt, Wbb and W+jets from the data
 - ightarrow Validation of NLO (tt, single-top) generators at low \sqrt{s}
 - ightarrow Validation of Wbb/cc & W+jets generators at low \sqrt{s}

→ Use of techniques NN, likelihood etc...

talk by A.Giammanco (CMS)

What can Tevatron do for LHC?

- Very similar environment: ideal to test analysis strategies and understand similar systematics (e.g. Underlying Event)
- W+jets, in particular Wbb(X), Wcc(X), Wc(X), are significant backgrounds for Top analyses at both accelerators; different MC models give different kinematics => sizeable differences in efficiency estimates. Improvement by tuning generators to Tevatron data?
- PDFs for LHC are currently extrapolated from a global fit heavily relying on HERA ep data.
- But Tevatron pp data contribute with a richer menu (e.g. constraints to gluon PDF), see next slides.
- Impression from the outside(*): Currently relatively few studies at CDF+D0 to constrain PDFs. Is it true?

(*) I.e. by watching public results:

http://www-cdf.fnal.gov/physics/physics.html http://www-d0.fnal.gov/Run2Physics/WWW/

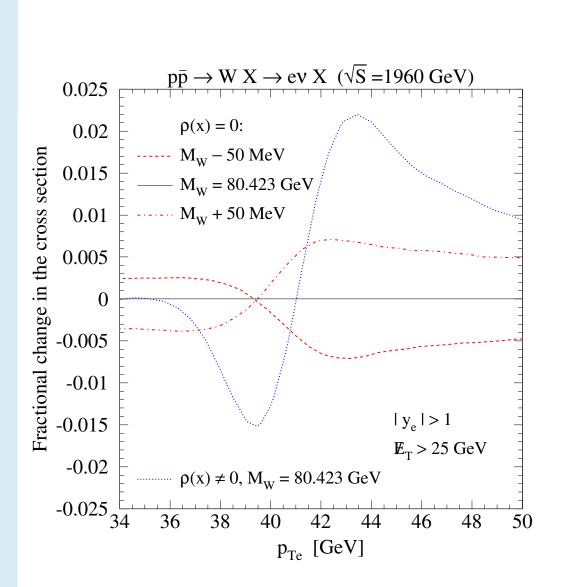
Projects and Goals – Single Top

- Improve communication between experimentalists and theorists, and Tevatron and LHC experimentalists.
- Make new theory tools, e.g., W+jet at NLO by J.Campbell et al. (MCFM), ZTOP, COMPHEP, available and useful to experimentalists.
- W + t at NLO needed at the LHC.
- How do new ideas for the discrimination between signal and background, e.g., parity/charge asymmetries by M.Bowen et al., look at NLO and when realistic detector models are used ?
 → ATLAS and CMS will look into it.
- ATLAS and CMS analysis: full simulation and NLO event generators
- CDF/D0 will try to measure the flavor decomposition in W+jets events and compare to theory.

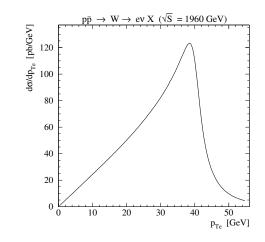
Precision Physics with W/Z Bosons

S.Berge, U.Baur, C.Carloni Calame, S.Dittmaier, P.Golonka, C.Hays, H.Schellman, M.Kraemer, K.Melnikov, G.Montagna, P.Nadolsky, F.Petriello, A.Vicini, W.Placzek, C.–P. Yuan, and collaborators.

 $\sigma_W, \sigma_Z, d\sigma/dM_T(l\nu), A_{FB}, \dots$ $\Rightarrow M_W, \Gamma_W, \sin^2 \theta_{eff}, \text{ detector cali-}$ bration, luminosity monitor, PDFs, ...


- Advantages/disadvantages of different methods to measure the W mass: revitalization of the ratio method ?
 What can the Tevatron say about it ? → D0/CDF will look into this as soon as measurement with "traditional" method is finalized
- Using W,Z cross sections as luminosity monitors at the LHC, PDF uncertainties ?
- W charge asymmetry to constrain quark PDFs. new: CDF uses M_W constraint to measure W rapidity may be more sensitive than lepton y measurement. Look into Z rapidity distribution to constrain PDFs.

- Improved predictions for W and Z observables:
 - What precision is needed to match the experimental precision ?
 - What calculations are available, in what form (parton level MC, event generators) and what do they include ?
 - What is the remaining theoretical uncertainty ? Do we need improved predictions ?
- q_T broadening of W/Z distributions at small x: if seen at the Tevatron, we have to worry about impact on M_W measurement, especially at the LHC. (see S.Berge's talk)


 \rightarrow DO will try to measure this effect.

Small x: $p\bar{p} \rightarrow W^+ X \rightarrow e^+ \nu_e X$ at Tevatron

talk by S.Berge

 $|y_e| > 1$

Small x broadening (blue line) compared to a shift of the W boson mass of ± 50 MeV (red line).

Plotted is the ratio

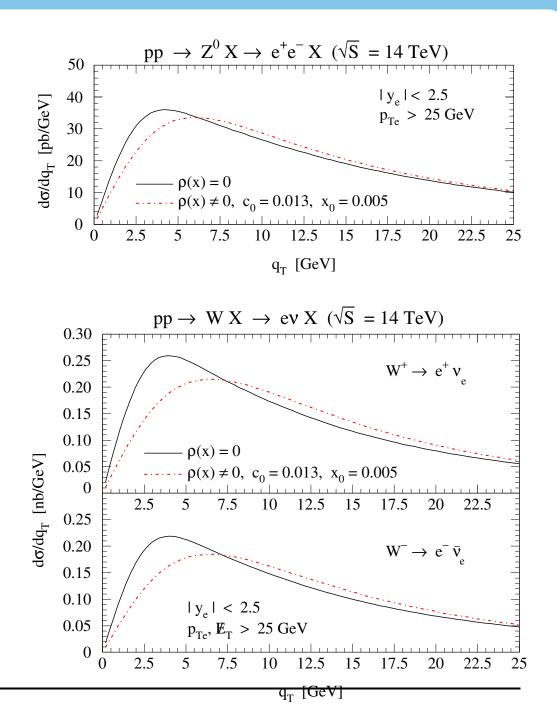
$$rac{d\sigma_X/dq^e_T}{d\sigma^{
ho(x)=0}_{M_W}/dq^e_T}$$

over the lepton transverse momentum $q_T^e !$

For $|y_e| < 1$, small-x effect is comparable with a 10-20 MeV mass shift.

Small x: $pp \rightarrow Z/W + X$ at LHC

talk by S.Berge


 $|y_e| < 2.5$:

- x stays above 10^{-4} (SIDIS data)

- coverage of the inner ATLAS detector

Small x broadening enhanced even in the central region due to $x|_{y\approx 0} \approx 0.006$

Dependence of $d\sigma/dq^W_T$ on transverse W-boson momentum q^W_T

Toward improved predictions for W/Z observables

• QCD: $\mathcal{O}(\alpha_s^2)$ and W and Z q_T resumed implemented in MC program RESBOS (*Balazs,Nadolsky,Yuan*).

new: improved fit for nonperturbative part to q_T distribution (*Kony-chev*,*Nadolsky*)

new: final state QED contribution included (*Cao*, *Yuan*)

new: W and Z y distributions known at NNLO QCD (*Anastasiou, Melnikov, Petriel* "Fully differential calculations for W,Z production may be getting within reach"

• EWK: Complete $\mathcal{O}(\alpha)$ corrections (*Dittmaier, Krämer; Baur,D.W.*) implemented in MC programs WGRAD, ZGRAD (*Baur,D.W.*).

new: Multiple photon radiation in W and Z production implemented in MC program HORACE (*Carloni Calame,Montagna,Nicrosini,Treccani*) and WINHAC (*Jadach,Placzek*).

new: QED corrections included in extraction of PDFs (*J.Stirling et al.* – effect on W/Z observables ?

Projects and Goals

- Unified Monte Carlo program(s) (QCD+EWK, multi-photon radiation, O(α²_s), O(αα_s), EWK Sudakov logs, ...)
 → ongoing work by authors of WINHAC, RESBOS, HORACE, WGRAD/ZGRAD
 → will be also discussed at LesHouches (S.Dittmaier)
- Tuned comparison of available Monte Carlo programs (RESBOS, W/ZGRAD, HORACE, WINHAC, PYTHIA+PHOTOS, MC@NLO...) that provide precise predictions for W/Z observables (a la LEPI/II CERN yellow books):
 - Provide a recommendation of how to implement (dominant) electroweak corrections.
 - Provide an estimate of remaining theoretical uncertainties due to missing higher order corrections.

Summary Table for Proceedings

Observable	exp. precision		sion	impact of h.o. corr.			
$\mathcal{L}[fb^{-1}]$	0.5	1	2	QED FSR	EWK	expon. FSR	
$\sigma_{W,Z}$							
$M_W(\mu(e))$ [MeV]	51	32	27	$-168 \pm 20(-65 \pm 20)$	10	10(2)	
$d\sigma/dM_T$							
Will be ready by the final meeting in Oct. 2005!							
$d\sigma/dM$							
$d\sigma/dp_T$							
$d\sigma/dy$							
$d\sigma/dp_T/dy$							
A_{FB}							
W charge asymmetry							

exp. prec.: see talks by C.Hays and P.Murat at the 1.meeting at Fermilab.