ALPGEN update

http://mlm.home.cern.ch/mlm/alpgen M.L. Mangano, M.Moretti, F.Piccinini, R.Pittau, A.Polosa hep-ph/0206293

- Ready-to-use exact LO matrix element calculations for multiparton final states in hadronic collisions
- Parton-level event generation (weighted/unweighted)
 - mass terms and finite width effects
 - spin correlations, also in decays like $t \rightarrow bW(\rightarrow ff')$
 - cross section exact to all orders in $1/N_c$, colour structure to $O(1/N^2)$
 - EW/QCD interferences available for key processes
- Evolution of the parton level final state through parton shower and hadronization phases, using Herwig or Pythia
- Code available in F77, as well as in a version with some F90 routines (transparent to the user, preferred for CPU performance if compiler available)

Features of the new version, v2

- More processes (single top, gg->H, W gamma, etc)
- Option of CKKW scale-setting procedure
- Matching/merging prescription hard-wired
- Optimized unweighting hard-wired
- Improved structure for passing inputs (cuts, options, parameters, etc) to the executable
- Improved output-file management
- Few, minor, bugs fixed

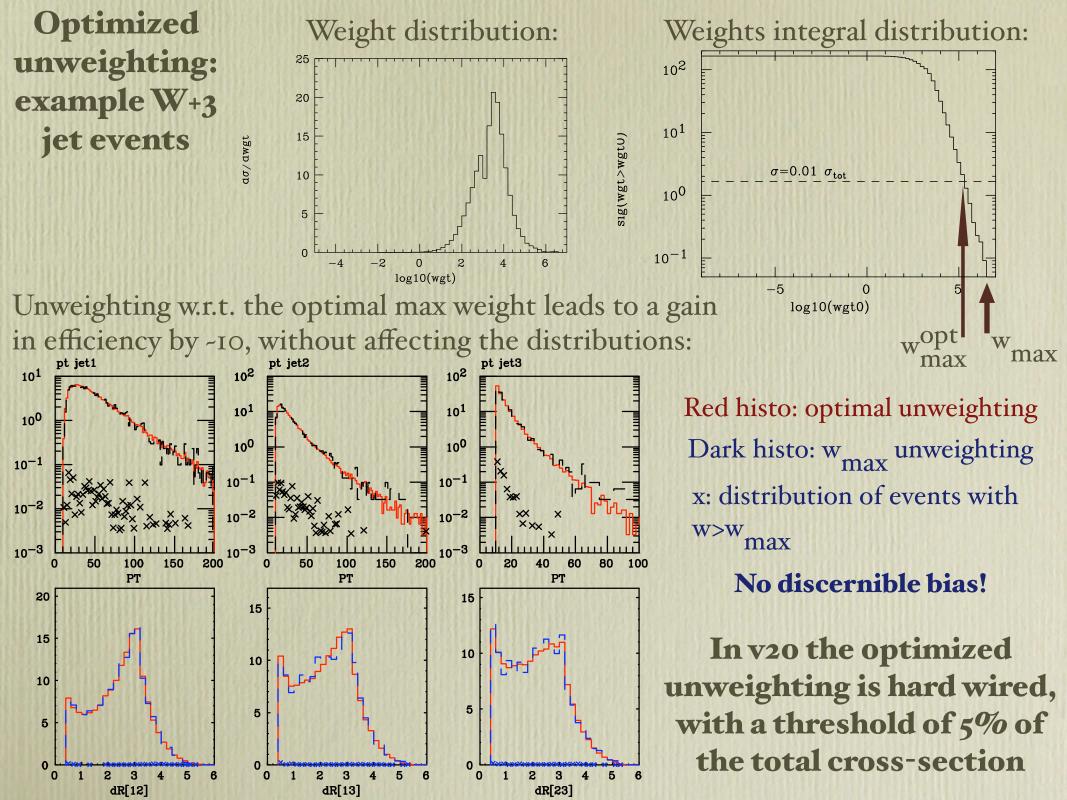
Available processes

- WQQ+N jets, Z/Y+QQ+N jets (Q=c,b,t), $N \leq 4$
- W+ N jets, Z/Y+ N jets, $N \leq 6$
- W+c+ N jets, $N \leq 5$
- QQ + N jets (Q=c,b,t), $N \leq 6$
- $QQQ'Q' + N jets (Q,Q'=b,t), N \leq 4$ In V2.0: Q,Q'=b,t,c
- N jets, $N \leq 6$
- QQ+**Higgs**+ N jets (Q=b,t), $N \leq 4$
- $nW + mZ + pHiggs + N jets, N < n+m+p+N \leq 8, N \leq 3$
- $n Y + N jets, N < n + N \leq 6$ In V2.0:
- single top production: t+q, t+bbar, t+W, t+bbar+W
- Higgs plus multijets, via the ggH vertex

Input-cards structure

All parameters relevant for a given process have a preset default.

The list of parameters of a given process, their labels and preset value can be automatically displayed (or printed) running the code


with imode=3,4

```
~/alpha/v20/wjetwork> ./wjetgen
input generation mode:
0: generate weighted events, no evt dumps to file
 1: generate wgtd events, write to file for later unweighting
 2: read events from file for unweighting or processing
 3: print parameter options and defaults, then stop
4: write to par.list parameter options and defaults, then stop
3
hard process code (not to be changed):
 ihrd = 3
 Select pp (1) or ppbar (-1) collisions:
 ih2= -1
 beam energy in CM frame (e.g. 7000 for LHC):
 ebeam= 980.
 parton density set:
 ndns = 5
```

Each parameter is labeled by a string (e.g. "njets", "ptjmin"), to be used to reset the parameters before a run

Input file, common structure for all processes

1 !imode
w2j ! label for files
0 ! start with: 0=new grid, 1=previous warmup grid, 2=previous generation grid
10000 2 ! Nevents/iteration, N(warm-up iterations)
100000 ! Nevents generated after warm-up
*** The above 5 lines provide mandatory inputs for all processes
*** The lines below modify existing defaults for the hard process under study
print 1 ! display list of parameters and default values
ickkw 1 🛛 🕴 reset parameter "ickkw"
njets 2 ! reset parameter "njets"
ptjmin 20 🛛 🔄 reset parameter "ptjmin"
print 1 ! redisplay list, to make sure its all OK
eoi 1 ! end sequence of inputs

Outline of the matching/merging prescription

- Generate parton-level configurations for a given hard-parton multiplicity N_{part}, with partons constrained by
 - $p_T > p_T \min \Delta R_{jj} > R_{min}$
- **Perform the jet showering**, using the default Herwig/Pythia algorithms
- Process the showered event (before hadronization) with a cone jet algorithm, defined by
 - E_{T min} and R_{jet}
- Match partons and jets:
 - for each hard parton, select the jet with min $\Delta R_{j-parton}$
 - if $\Delta R_{j-parton} < R_{jet}$ the parton is "matched"
 - a jet can only be matched to a single parton
 - if all partons are matched, keep the event, else discard it
- This prescription defines an **inclusive sample** of N_{jet}=N_{part} **jets**
- Define an **exclusive N-jet** sample by requiring that the number of reconstructed showered jets N_{jet} be equal to N_{part}
- After matching, combine the exclusive event samples to obtain an **inclusive sample containing events with all multiplicities**

7

Few examples of matching:

hard parton
parton emitted by the shower

Event matched, N_{jet}=N_{part}=3, keep

collinear double-logarithmic double counting

NOT matched, N_{jet}=N_{part}=3, but N_{match}=2 Throw away soft single-logarithmic double counting

Event matched, N_{jet}>N_{part}, keep for inclusive sample, but throw away for exclusive samples.

Matching implementation, status

CKKW scale setting implemented in the Alpgen parton-level generation for:

W/Z+jets N jets ttbar + jets

In progress for:

W/Z+ b bbar + jets b bbar + jets (turned on by parameter ICKKW=1) Factorization scale: selected by the user Renormalization scale: CKKW prescription

In this case only the light jets are matched

Jet-parton matching implemented for the above procs using cone jets:

* ET(cluster)= 0.75 * ptjmin * R(cluster)=dRjmin * ΔR(parton-jet)>1.5 R(cluster)

Events not passing the matching are thrown away, and counted as "inefficiency", in other words they reduce the cross-section of the sample.

The matching is transparent to the user (if an event doesn't match, the code goes directly to the next event; a matched event carries no special flag)

Processes not in the above list behave as before

Future plans

Immediate future:

complete v2.0 for release:

* overall validation (e.g. against v1.33)
* freezing of the input/output changes (with input form users interfacing pre-release versions in cdf/do/atlas/cms)
* documentation

v2.I:

Add new processes:

* t tbar gamma gamma * W/Z + gamma (possibly with anomalous couplings)

Implement matching for other processes:

```
* vbjets
* gamma + jets
```