Properties of DØ Run II Cone Algorithm

Zdenek Hubacek

Czech Technical University in Prague

TeV4LHC Workshop 28-30 April 2005, CERN

Motivation

• To address CDF observation of unclustered ${\it E_{T}}$

- Runll cone R = 0.7
- Jet towers
- Unclustered towers pT < 2GeV
- **Unclustered** towers pT > 2GeV

We see it too!

Brief DØ Cone Algorithm Description

 \bullet Follows Runll Jet Physics Workshop ${\rm HEP-EX}/0005012$

- Iterative procedure to find proto-jets
- Midpoints added between each pair of proto-jets
- Overlap treatment

- Cone radius 0.7 for QCD jet analyses, 0.5 for top, Higgs and others
- Minimal jet *pT*: 6 GeV (DØ public results have 8 GeV)
- Overlap fraction f = 0.5

How the algorithms works 1

4 / 22

How the algorithm works 2

DØ quantitative analysis on MC

- introduce 'Second Pass Jets'
 - use the same jet algorithm, but
 - the same algorithm runs only on the remaining unclustered towers after the first run of the algorithm
- study their characteristics as a
 - function of distance to the closest first pass (aka normal) jet
 - function of their $\boldsymbol{p}\boldsymbol{T}$ ratio to the closest first pass jet
 - function of cone radius
 - function of rapidity
- study done on DØ MC

• Where are they defined

 \implies they are not completely perfect jets . . .

'Second Pass' Jets

The unclustered energy made a second pass jet!

Distance between Second Pass and First Pass Jets

High pT jets are more likely to have a second pass jet nearby (low pT cut for second pass jets: pT > 6GeV)

Distance between Second Pass and First Pass Jets

Similar observation is found for cone 0.5, but peak is shifted because of cone radius

As a function of cone radius ...

Total fraction of second pass jets (= integrated over R) is higher for R = 0.7 Cones at lower pT. And the distributions are different.

As a function of cone radius (cont'd)

At higher pT the total fractions are practically equal, but the distributions are different.

Brief summary

Done:

- Second Pass Jets were observed
- their distance from first pass jets was investigated

Next: How does it influence are physics meassurements?

- $\bullet\,$ Study the fraction of pT carried by Second Pass Jets
 - Distribution of $pT_{\rm 2^{nd}Pass}/pT_{\rm 1^{st}Pass}$
 - Distribution of $R_{\rm 2^{nd}Pass-1^{st}Pass}$ in different $pT_{\rm 2^{nd}Pass}/pT_{\rm 1^{st}Pass}$ bins
- Look at the pT spectra of these jets

$pT_{2^{nd}Pass}/pT_{1^{st}Pass}$ ratio distribution

$pT_{2^{nd}Pass}/pT_{1^{st}Pass}$ ratio distribution

Second Pass Jets carrying more than 20% of First Pass Jet $\ensuremath{\textit{pT}}$

At low pT, the fraction is a few % At pT = 75 - 150 GeV, the fraction is $\sim 1.5\%$

Second Pass Jets carrying more than 20% of First Pass Jet $\ensuremath{\textit{pT}}$

At pT = 300 - 600GeV, the fraction is < 0.2%

Second Pass Jets carrying more than 40% of First Pass Jet $\ensuremath{\textit{pT}}$

Zdenek Hubacek (CTU Prague)

18 / 22

Properties of DØ Run II Cone Algorithm TeV4LHC, CERN, April 2005

Second Pass Jets carrying more than 40% of First Pass Jet $\ensuremath{\textit{pT}}$

Zdenek Hubacek (CTU Prague) Properties of DØ Run II Cone Algorithm TeV4LHC, CERN, April 2005 20 / 22

Summary

- DØ defines Second Pass Jet to quantitatively study the unclustered energy
 - negligible effect on QCD cross-sections
- To be studied:
 - effects on multi-jet production
 - effects on top, $W/Z,\,\ldots$ physics
- So far, we don't see a motivation for a major change of the jet algorithm ('search cone'), which introduces a chain of questions:
 - more overlapping jets \Longrightarrow can lead to fat jets
 - increase overlap fraction \implies allows largely overlapping jets to be resolved \implies distance between jets can be very small \implies small pT jet can eat significant pT from high pT jet

Conclusion

• More studies and comparisons between algorithms are needed

- We would like to see corresponding results from CDF using the Search Cone Algorithm
 - Search Cone should remove large part of these Second Pass Jets

• Can CDF show a plot with distance between jets?