TeV4LHC Workshop CERN April 29, 2005

Single Top Searches at the Tevatron

- Electroweak top quark production
- Signal and background modeling, b-tagging
- CDF analysis
 - s-channel, t-channel, combined results
- DØ analysis
 - Cut-based, Decision Trees, Neural Networks
- Cross section limits
- Outlook

Arán García-Bellido on behalf of CDF and DØ

- Observe single top quark production in Run II + Final Goal!
 Direct access to V_{tb} CKM matrix element
- Look for new physics: FCNC, 4th generation, W', SUSY,...
- Probe W+jets understanding and help SM higgs searches

Signal modeling

Have to get the t-channel right: Avoid double counting when different diagrams produce same final states in different kinematic regions Use ZTOP as NLO benchmark http://home.fnal.gov/~zack/ZTOP

CDF: Reweight MADEVENT to fit ZTOP Generate: $b+q \rightarrow t+q'$ and $g+q \rightarrow t+b+q'$ separately and merge them to reproduce the b p_{τ} spectrum from NLO

► DØ: "Effective" NLO CompHEP (also used in CMS) Match 2→2 and 2→3 processes using b p_{τ} for cross over, normalize to NLO σ Resulting distributions reproduce ZTOP & MCFM

Arán García-Bellido

Background modeling

000

a

proton

antiproton

W+jets Distributions from Alpgen Normalization from data Flavor fractions from Alpgen Top pairs

- Use Pythia (CDF) and Alpgen (DØ)
- Multijet events (misidentified lepton)
 - From data
- Diboson (WZ, WW)
 - Estimated from Pythia (CDF) and Alpgen (DØ)

Arán García-Bellido Single T

Both CDF and DØ use a secondary vertex reconstruction algorithm ~40% b-jet efficiency

~ 1% mistag efficiency (light jets)
Charm tagging rate ~30% of b
DØ performance is very similar
CDF has recently released an improved version (15% better)

Arán García-Bellido

Single Top Se

Jet E_⊤ (GeV)

Arán García-Bellido

CDF analysis after selection

		Process	Combined	1-tag	2-tag
90.16	M _{Ivb} MC Distributions:	t-channel s-channel	2.8 ± 0.5 1.5 ± 0.2 3.8 ± 0.9	2.7 ± 0.4 1.1 ± 0.2 3.2 ± 0.7	0.02 ± 0.01 0.32 ± 0.05 0.60 ± 0.14
0.08		Nontop Total background Total expected	30.0 ± 5.8 33.8 ± 5.9 38.1 ± 5.9	3.2 ± 0.7 23.3 ± 4.6 26.5 ± 4.7 30.3 ± 4.7	0.00 ± 0.14 2.59 ± 0.71 3.19 ± 0.72 3.53 ± 0.72
0.02	50 200 250 300 35 M _{bb} Ge	Observed	42	33	5.55 <u>6</u>

Systematics		t-channel	s-channel	Combined	
1	JES	+2.4	+0.4	+0.1	
2	ISR	± 1.0	± 0.6	± 1.0	
3	FSR	± 2.2	±5.3	±2.6	
4	PDF	± 4.4	±2.5	± 3.8	
5	Generator	±5	±2	±3	
6	Top quark mass	+0.7	-2.3	-4.4	
7	$\epsilon_{\rm trig}, \epsilon_{\rm ID}$, luminosity	± 9.8	± 9.8	± 9.8	
	김 씨가 귀엽다 아내는 것 같아요. 이 이 이 옷을 잡아야 해 있는 것이다.				

Acceptance: 1.06±0.08% (s-channel) 0.89±0.07% (t-channel)

 Main systematics: B-ID 7% Luminosity 6% m_t 4% JES 4%

CDF distributions

CDF limits

b Build a likelihood as a function of $\beta_i = \sigma_i / \sigma_i^{SM}$

Background is allowed to float but is constrained to expectation Find maximum of the likelihood:

L(separate)=L(2tag events) \otimes L(1tag Q \times η distribution) L(comb)=L(H_T distribution)

Shape of systematic uncertainties included in the likelihood

Cross section upper limits (pb) at 95% CL: $\mathcal{L}=162 \text{pb}^{-1}$

s-channelt-channelCombinedObservedExpectedObservedExpectedObservedExpected13.612.110.111.217.813.6

DØ search strategy

Basic Selection Cuts

Lepton(e,µ): $p_T > 15 \text{ GeV}$, $|\eta_{e(\mu)}| < 1.1$ (2.0) Jets: $2 \le N_{jets} \le 4$, $E_T > 15 \text{ GeV}$, $|\eta| < 3.4$ Jet1: $E_T > 25 \text{ GeV}$ MET: MET>15 GeV Other clean-up cuts

Require =1 and \geq 2 SVT tags

t-channel: at least one non-b-tagged jet

Multivariate analysis: Simple cuts, Decision Trees, Neural Networks

Cut analysis: count events DT, NN: use 2D output in a likelihood

DØ analysis after selection

DØ optimizes selection to maximize acceptance
 Allows a lot of background at this stage!

Then use multiple distributions to separate signal-background

Source	<i>s</i> -channel search	t-channel search
tb	5.5 ± 1.3	4.7 ± 1.0
tqb	8.6 ± 1.9	8.5 ± 1.9
$t\overline{t}$	78.3 ± 18.3	75.9 ± 17.6
W+jets	169.1 ± 20.1	163.9 ± 18.7
Multijet	31.4 ± 3.3	31.3 ± 3.2
Total background	287.4 ± 43.6	275.8 ± 40.6
Observed events	283	271

Acceptance: 2.7±0.2% (s-channel) and 1.9±0.2% (t-channel) CDF has a more restrictive selection: optimize S/B to maximize separation and use one distribution

Systematic Uncertainites

Monte Carlo Systematic Uncertainties Theory cross sections 15% SVT modeling, single (double) tag 10%(20%) 160 Jet Energy Scale 10% Trigger Modeling 6% Jet ID 5% ℓ ID 5% JES, b-tag and trigger modeling 10% Total uncertainty: 1 tag 2 tags Signal acceptance 15% Background sum 10% Number of Jets Some systematic uncertainties also affect shape: JES, b-tag and trigger modeling Number of Jets Signal acceptance 15% Background sum 10% Now 26% 100 Result is statistics limited 10%				
Theory cross sections 15% SVT modeling, single (double) tag 10%(20%) Jet Energy Scale 10% Trigger Modeling 6% Jet ID 5% / ID 5% Some systematic uncertainties also affect shape: JES, b-tag and trigger modeling Total uncertainty: 1 tag 2 tags Signal acceptance 15% 25% Background sum 10% 26% Result is statistics limited	Monte Carlo Systematic Uncertainties	rield	180	DØ Run II Preliminary, 230pb ⁻¹ –⊕– Data
SVT modeling, single (double) tag 10%(20%) Jet Energy Scale 10% Trigger Modeling 6% Jet ID 6% l ID 5% l ID 5% l ID 5% Some systematic uncertainties also affect shape: JES, b-tag and trigger modeling Total uncertainty: 1 tag 2 tags Signal acceptance 15% 25% Background sum 10% 26% Result is statistics limited	Theory cross sections15 %	ent /	160	Background sum
Jet Energy Scale Trigger Modeling Jet Fragmentation Jet ID find (ID) Some systematic uncertainties also affect shape: JES, b-tag and trigger modeling Total uncertainty: 1 tag 2 tags Signal acceptance Background sum 100 100 100 100 100 100 100 10	SVT modeling, single (double) tag $10\%(20\%)$	Ň	140	s-channel (×10)
Trigger Modeling Jet Fragmentation Jet ID (ID Some systematic uncertainties also affect shape: JES, b-tag and trigger modeling Total uncertainty: 1 tag 2 tags Signal acceptance Background sum 10% 26% Result is statistics limited	Jet Energy Scale 10%		100	
Jet ID Jet ID lin = 5% lin = 5% Some systematic uncertainties also affect shape: JES, b-tag and trigger modeling Total uncertainty: 1 tag 2 tags Signal acceptance 15% 25% Background sum 10% 26% Result is statistics limited	Trigger Modeling6 %		80	<u> </u>
Jet ID / ID Some systematic uncertainties also affect shape: JES, b-tag and trigger modeling Total uncertainty: 1 tag 2 tags Signal acceptance 15% 25% Background sum 10% 26% Result is statistics limited	Jet Fragmentation 6%		60	
 <i>l</i> ID Some systematic uncertainties also affect shape: JES, b-tag and trigger modeling Total uncertainty: 1 tag 2 tags Signal acceptance 15% 25% Background sum 10% 26% Result is statistics limited 	Jet ID 5%		40	
Some systematic uncertainties also affect shape: JES, b-tag and trigger modeling Total uncertainty: 1 tag 2 tags Signal acceptance 15% 25% Background sum 10% 26% Result is statistics limited	ℓ ID 5 %		20	
 Some systematic uncertainties also affect shape: JES, b-tag and trigger modeling Total uncertainty: 1 tag 2 tags Signal acceptance 15% 25% Background sum 10% 26% Result is statistics limited 		:	-	2 3 4 Number of Jets
 Total uncertainty: 1 tag 2 tags 30 30	Some systematic uncertainties also affect shape: JES, b-tag and trigger modeling	Event Yield	60 - 50	DØ Run II Preliminary, 230pb ⁻¹ Data Background sum t-channel (×10) s-channel (×10)
1 tag 2 tagsSignal acceptance15%10%26%Nesult is statistics limited	Total uncertainty:		40-	
	Signal acceptance1 tag2 tagsBackground sum15%25%Nesult is statistics limited		30 20 10 0 0 10	00 200 300 400 500 600 700 800 \$ [GeV]

Arán García-Bellido

Discriminating variables Individual object kinematics

- $p_T(\text{jet1}_{\text{tagged}})$
- $p_T(\text{jet1}_{untagged})$
- $p_T(\text{jet2}_{\text{untagged}})$
- $p_T(\text{jet1}_{\text{nonbest}})$
- $p_T(\text{jet2}_{\text{nonbest}})$ Global event kinematics
- M_T (jet1, jet2)
- $p_T(jet1, jet2)$
- M(alljets)
- \bullet $H_T(\text{alljets})$
- $M(\text{alljets} \text{jet1}_{\text{tagged}})$
- H(alljets jet1_{tagged})
- H_T(alljets jet1_{tagged})
- $p_T(\text{alljets} \text{jet1}_{\text{tagged}})$
- M(alljets jet_{best})
- H(alljets jet_{hest})
- H_T(alljets jet_{best})
- $M(top_{best}) = M(W, jet_{best})$ $\sqrt{\hat{s}}$

Angular variables . **e**

- $\Delta R(\text{jet1}, \text{jet2})$
- iet • $Q(\text{lepton}) \times \eta(\text{jet1}_{\text{untagged}})$
- $\cos(\text{lepton}, Q(\text{lepton}) \times z)_{\text{topbest}}$
- $\cos(\text{lepton}, \text{jet1}_{\text{untagged}})_{\text{top}_{\text{tagged}}}$
- cos(alljets, jet1_{tagged})_{alljets}
- cos(alljets, jet_{nonbest})_{all jets}

Arán García-Bellido

This is where our phenomenology friends come so handy!

Three broad categories: Object kinematics Global event kinematics Angular correlations

Reconstruct W: from ℓ and v

To reconstruct the top quark:

s-channel: "best" jet algorithm

• $M(top_{tagged}) = M(W, jet1_{tagged})$ Chose the jet that gives m_t closest to 175GeV

t-channel: lead b-tagged jet + W

Reconstruct q': lead untagged jet

s-channel search only t-channel search only used in both

Object kinematics

Event kinematics & angular variable

Separating signal from backgrounds

DØ has implemented three analysis methods: Cut-based Decision Trees Neural Networks

Use same pool of discriminating variables for all 3 analyses

Optimize separately for s-channel and t-channel

Input variables are independent of ℓ flavor, but optimize separately for e and μ datasets, given the different coverage and resolutions

Focus on two dominant backgrounds: Wbb and $tt \rightarrow \ell + jets$

A total of 8 sets of cuts/trees/networks:

tb-Wbb, tb-tt $\rightarrow \ell$ + jets, tqb-Wbb & tqb-tt $\rightarrow \ell$ + jets (for e and μ)

Cut-based analysis

 Rate each discriminant variable according to its optimal cut Optimal cut values are obtained minimizing the expected limit with respect to cut values derived from the signal sample
 Try several sets of ANDed variables and re-optimize
 Select the set that yields the lowest expected limit

<u></u>		
	s-channel	t-channel
tb	4.5 ± 1.0	3.2 ± 0.8
tqb	5.5 ± 1.2	7.0 ± 1.6
$t\bar{t}$	27.6 ± 7.6	55.9 ± 12.3
$W+{ m jets}$	102.9 ± 13.7	72.6 ± 9.7
Mis-ID'd lepton	17.2 ± 2.0	17.0 ± 2.0
Background sum	153.1 ± 24.5	148.7 ± 24.8
Observed events	152	148
before cuts S/B	= 1/52	1/32
after cuts S/B	= 1/34	1/21

Cut-based analysis: cuts

	<i>s</i> -channel		<i>t</i> -channel	
Channel	Variables	Cuts	Variables	Cuts
Electron				
=1 Tag	$p_T(\text{jet1}_{tagged})$	$> 27 { m ~GeV}$	$H_T(\text{alljets})$	$> 71~{ m GeV}$
	$M(\text{alljets} - \text{jet1}_{\text{tagged}})$	$< 70~{ m GeV}$	$M({\tt alljets})$	$> 57~{ m GeV}$
	$\sqrt{\hat{s}}$	$> 196 { m ~GeV}$	$\sqrt{\hat{s}}$	$> 203 { m ~GeV}$
			$ 175 - M(top_{tagged}) $	$< 57~{ m GeV}$
			$p_T(\text{jet1}_{tagged})$	$> 21~{ m GeV}$
$\geq 2 \text{ Tags}$	$p_T(\text{jet1}_{tagged})$	$>42~{ m GeV}$	$p_T(\text{jet1}_{tagged})$	$> 34~{ m GeV}$
	$M(\text{alljets} - \text{jet1}_{\text{tagged}})$	$< 98~{ m GeV}$	$M(\text{alljets} - \text{jet1}_{tagged})$	$< 75~{ m GeV}$
	$H(\text{alljets} - \text{jet1}_{\text{tagged}})$	$< 304~{ m GeV}$	$H(\text{alljets} - \text{jet1}_{\text{tagged}})$	$< 504~{ m GeV}$
	$H(\text{alljets} - \text{jet}_{\text{best}})$	$< 304~{ m GeV}$	$H(\text{alljets} - \text{jet}_{\text{best}})$	$< 504~{ m GeV}$
Muon				
=1 Tag	$p_T(\text{jet1}_{tagged})$	$> 33 { m ~GeV}$	$ 175 - M(top_{tagged}) $	$< 60~{ m GeV}$
	$M(\text{alljets} - \text{jet1}_{tagged})$	$< 74~{ m GeV}$	$\sqrt{\hat{s}}$	$> 210~{ m GeV}$
	$H(\text{alljets} - \text{jet}1_{\text{tagged}})$	$< 504~{ m GeV}$	$M({\tt alljets})$	$> 70~{ m GeV}$
	$H(\text{alljets} - \text{jet}_{\text{best}})$	$<504~{\rm GeV}$	$H_T(\text{alljets})$	$> 58~{ m GeV}$
$\geq 2 \text{ Tags}$	$p_T(\text{jet1}_{tagged})$	$> 33~{ m GeV}$	$ 175 - M(top_{tagged}) $	$< 213~{ m GeV}$
	$M(\text{alljets} - \text{jet1}_{tagged})$	$< 74~{ m GeV}$		
	$H(\text{alljets} - \text{jet}1_{\text{tagged}})$	$< 504~{ m GeV}$		
	$H(\text{alljets} - \text{jet}_{\text{best}})$	$< 504~{ m GeV}$		

Decision Trees

Multivariate technique widely used in social sciences Recently applied to HEP: MiniBooNE (object ID) Gives probability for an event to be signal

Decision Tree outputs

Neural Networks

Arán García-Bellido

Neural Networks separation

Focus on two main backgrounds:
▶ Wbb takes care well of Wjj (j=g,u,d,s,c)
▶ tt→ dilepton is small compared to tt→ ℓ+jets

Neural Networks output

Arán García-Bellido

Limits from binned likelihood

No evidence for single top signal
 Set 95% CL upper cross section limit with Bayesian approach
 Use 2D histograms as input to build binned likelihood
 Including bin-by-bin systematics and correlations

Used for DT and NN analyses Cut-based analysis uses likelihood from event count

tb-tt NN outpu tqb-tt NN output 12 12 10 10 8 8 0.5 0.5 6 6 4 4 s-chan 2 2 DØ Run II Preliminary, 230pb DØ Run II Preliminary, 230pb 0.5 h-WhENN outpu Ω 0.5 tab-Wbb NN output tb-Wbb NN output Arán García-Bellido Single Top Searches at the Tevatron

25

data

single top

Sum bkgd

DØ results

Use Bayesian approach to combine channels (e, μ and 1 tag, 2 tags)
 Take systematics and correlations into account
 Decision Trees and Neural Networks have similar sensitivity
 Multivariate analysis + shape information from output:

 factor 2 better than simple cuts

Beyond the SM

DØ exclusion contours on the (σ_s , σ_t) plane, built from a joint likelihood with independent data samples

Summary and next steps

95% CL Measured Upper Limits in pb

	s-channel	t-channel
DO Run I, 90 pb ⁻¹	17	22
CDF Run II, 162 pb^{-1}	13.6	10.1
$\rm D\ensuremath{\emptyset}$ Run II , 230 $\rm pb^{-1}$ cuts	10.6	11.3
DTs & binned likelihood	8.3	8.1
NNs & binned likelihood	6.4	5.0
NLO theory	=0.88	=1.98

Current analyses need a few fb⁻¹ for observation

Upgrade to improved b-tagging Explore multivariate methods: Kinematic fitter, Neural Network, Matrix Element, optimized likelihoods

Optimizing current analyses Increasing acceptance Improving object ID New methods under study Increased dataset!

Arán García-Bellido

Conclusions

Single top search at the Tevatron is more challenging than anticipated (see Matt Bowen's talk next)
 Signal generators are well established
 W+jets & heavy flavor fractions estimation are the big issues
 Need advanced analysis techniques to extract signal, but these require to understand well the systematics

CDF has published the first Run II limits
 DØ is about to submit the results presented here
 Reaching sensitivity to new Physics

Plenty of room for improvements:

- New analysis methods
- Better object ID, better b-tagging
- More data helps reduce the systematics

Our detectors are being understood better every day Data is pouring in (expect ×3 dataset by the end of the year) This is an exciting time for single top

Tevatron lumiminosity prospects

Arán García-Bellido

Extra1: CDF candidate event

Single Top Searches at the Tevatron

Arán García-Bellido

Extra2: quadr. b-tagged event in DØ

Arán García-Bellido

Extra 3: More info

CDF: http://www-cdf.fnal.gov/physics/new/top/top.html

DØ: http://www-d0.fnal.gov/Run2Physics/WWW/results/top.htm