

- Motivations
- Current limits and discovery perspectives
- Discriminating variables at LHC:
 - Natural width and cross section
 - Forward backward asymmetry

Motivations for a Z^{\prime}

- Additional gauge bosons emerge in many extended gauge models :
 - E6 breaking models. Type of breaking described by a phase term θ_{E6} . Three particular cases usually considered : Z'_{ψ} , Z'_{η} , Z'_{χ}
 - LR model : $SU(2)_{L} \times SU(2)_{R} \times U(1)_{B-L}$. Relative coupling strengths given by a parameter $\kappa = g_{R}/g_{L}$.
 - Little Higgs models.
- But also in extra dimensions models :
 - Kaluza Klein excitations.
- Also often considered :
 - Sequential standard models (SSM) : SM + 1 additional massive boson with the same couplings constants.

Typical current limits

- Indirect limits from the precision measurement at LEP (assuming no Z-Z' mixing):
 - E6 : ~ 400-600 GeV (depends on θ_{E6}).
 - LR : ~ 800GeV
- Direct limits from the search at Tevatron :
 - E6 : ~ 600-700 GeV (depends on θ_{E6}). Best limits comes from run II !
 - LR : ~ 600 GeV.

Discovery potential at colliders

- Very promising potential at Tevatron, LHC and NLC:
 - Already true with a reduced LHC luminosity.
- If a Z' is discovered, the next step will consist in determining the nature of the Z' !

Disentangling Z' models

- Only Z'→ee channel (clean signal).
- Studied variables :
 - Natural width x cross section
 - Forward backward asymmetry
- Considered models :
 - 3 classical E6 models : Z'_{ψ} , Z'_{η} , Z'_{χ} $M_{Z'}$ = 1.5 TeV
 - LR model with $\kappa = 1 M_{Z'} = 1.5$ TeV
 - Sequential Standard Model $M_{Z'}$ = 1.5 /4 TeV
 - Kaluza Klein excitations : one small extra dimension compactified on S¹/Z₂. One considers only 1st resonance at 4 TeV (Azuelos / Polesello : Eur. Phys. Journal C39 (2005) 1-11)
- Available data samples :
 - Atlas full simulation (Geant 3) + official reconstruction
 - Data Challenge 01 Monte Carlo samples.

The width & leptonic cross sections

- Partial decay widths(light fermions): $\Gamma(Z' \to f\overline{f}) = N_c \frac{g^2}{\cos^2 \theta_{\omega}} \frac{1}{48\pi} (g_V^2 + g_A^2) M$
- Width / branching ratios variations in E6 models (assuming no exotic / decays)
- Resonance shape for several models (arbitrary normalization)
- Problem : total width altered if Z' decays in invisible particles (gauginos by e.g.)

 $\sigma_{\parallel} \times \Gamma$

 $\rightarrow\,$ Consider instead the product :

0.2 Br(u)Br(d) 0.18 0.16 0.14 $10\frac{\Gamma}{M}$ 0.12 0.1 0.08 0.06 0.04 Br(e) 0.02 $Br(\nu_e)$ -0.5 0.5 -1 0 $\sin \theta$ Z' 1.5TeV -SSM 10⁴ -psi chi eta -LR 10³ DY 102 10 **⊨** 1000 1200 1400 1600 1800 2000 2200 MIL

The width extraction in Atlas

- Analytical fit of di-electron mass: $f(M_{II}) = \frac{a_{BW}M^2\Gamma^2}{(M_{II}^2 M^2)^2 + M^2\Gamma^2} \times e^{-c_{int}M_{II}} + a_{DY}e^{-c_{DY}M_{II}}$
- Example : η model (M₇ = 1.5TeV Γ_7 = 9.5GeV)

 $M = 4 \,\mathrm{TeV}$

KK

 3987.2 ± 6.8

 151.4 ± 13.8

 159.8 ± 8.0

The product $\sigma_{\text{II}} \mathrel{\textbf{X}} \Gamma$

		$\sigma_{ll}^{gen}(\mathrm{fb})$	$\sigma_{ll}^{rec}(\mathrm{fb})$	$\sigma_{ll}^{rec} \times \Gamma_{rec}$ (fb.GeV)
	SSM	$78.4{\pm}0.8$	78.5 ± 1.8	$3550{\pm}137$
	ψ	$22.6 {\pm} 0.3$	$22.7{\pm}0.6$	$166{\pm}15$
$M = 1.5 \mathrm{TeV}$	χ	$47.5 {\pm} 0.6$	$48.4{\pm}1.3$	$800{\pm}47$
	η	$26.2{\pm}0.3$	$24.6 {\pm} 0.6$	$212{\pm}16$
	LR	$50.8{\pm}0.6$	51.1 ± 1.3	1495 ± 72
$M = 4 \mathrm{TeV}$	SSM	$0.16 {\pm} 0.002$	$0.16 {\pm} 0.004$	19±1
	KK	$2.2{\pm}0.07$	$2.2{\pm}0.12$	331 ± 35

• Promising discriminating potential (independent on potential invisible decays).

The forward backward asymmetry : the potential

 Typical spin 1 particle behaviour (Z' may also have spin 2 in different models : warped extra dimensions by e.g. Not considered here) :

$$\frac{d\sigma}{d\cos\theta^{*}} \propto \frac{3}{8} \left(1 + \cos^{2}\theta^{*}\right) + \textbf{A}_{FB}\cos\theta^{*}$$

- Asymmetry at generation level for several models with $M_{Z'}$ = 1.5 TeV

Angles definition

- Main problem at LHC (pp collider):
 - Determination of the quark direction.
 - More problematic than at the Tevatron.
- Z' mainly originates from the annihilation of a valence quark with a sea antiquark.
- \to cos Θ^{\star} approximated by cos θ^{\otimes} , the angle between the outgoing electron and the reconstructed Z'.
 - If P_{quark} > P_{antiquark} : unbiased estimator only degraded by E/position resolution, ISR.
 - Otherwise : maximally biased estimator ($\cos \theta^{\otimes} = -\cos \theta^*$).

Angles definition (2)

- Study at Monte Carlo level to extract the probability to be in the "maximal bias" configuration : ε(Y).
 - Differences between models explained by the different u/d couplings in the initial state (source of systematic error).
- The impact of the imperfect knowledge of the quark direction:
 - $A_{FB}^{observed}$: roughly computed with cos θ^{\otimes} .
 - $A_{FB}^{observed} = (1 2 \times \langle \epsilon \rangle) \times A_{FB}^{generation}$
 - Artificial reduction of the observed asymmetry. Known as the dilution effect.
- A new corrected asymmetry is defined

$$m{A}_{FB}^{corrected} = rac{1}{\left(1 - 2 imes \langle \epsilon
ight)} m{A}_{FB}^{observec}$$

The A_{FB} extraction in Atlas

- A_{fb} is deduced with the "ratio" method :
 - Compute A_{FB} (cos θ) by the basic counting method (N⁺- N⁻/N⁺+N⁻) in several bins of cosθ
 - Extract A_{FB} by fitting $A_{FB}(\cos\theta) = \frac{8}{3}A_{FB} \times \frac{\cos\theta}{1+\cos^2\theta}$
- Example : χ model at M_Z = 1.5TeV (1.48TeV (M 1.52TeV)

The A_{FB} extraction in Atlas (2)

• The results for all models in the central mass bins

Model	$\int \mathcal{L}(fb^{-1})$	Generation	Observed	Corrected
$1.5\mathrm{TeV}$		2 2		
SSM	100	$+0.088 \pm 0.013$	$+0.060 \pm 0.022$	$+0.108 \pm 0.027$
χ	100	-0.386 ± 0.013	-0.144 ± 0.025	-0.361 ± 0.030
η	100	-0.112 ± 0.019	-0.067 ± 0.032	-0.204 ± 0.039
η	300	-0.090 ± 0.011	-0.050 ± 0.018	-0.120 ± 0.022
ψ	100	$+0.008 \pm 0.020$	-0.056 ± 0.033	-0.079 ± 0.042
ψ	300	$+0.010 \pm 0.011$	-0.019 ± 0.019	-0.011 ± 0.024
LR	100	$+0.177 \pm 0.016$	$+0.100 \pm 0.026$	$+0.186 \pm 0.032$
4 TeV				
SSM	10000	$+0.057 \pm 0.023$	-0.001 ± 0.040	$+0.078 \pm 0.051$
KK	500	$+0.491 \pm 0.028$	$+0.189 \pm 0.057$	$+0.457 \pm 0.073$

- Systematic error associated to ϵ lower then 10%.
- Possible to precisely measure the forward backward asymmetry in Atlas:
 - ϵ correction works well.
 - method remains efficient even far away from the resonance with a reduced statistic (not shown here).
 - very promising discriminating potential (especially when including analysis of all mass bins - cf slide 9).

Conclusion and prospects for the future

- If a Z' is discovered, one will have to discriminate between models:
 - Studies have shown that Atlas have a good potential to do this.
- Prospects for the future:
 - Study impact of PDF on accuracy (top priority).
 - Apply the method to more models and to other decay channels (taus, muons).
 - Study rapidity distribution to probe initial state (coupling to the initial quark). Higher luminosity required.
 - Extract a single set of parameters to disentangle Z' models (4 normalized couplings: γ^q_L,γ^l_L,U,D)

Back Up Slides

Moriond 2005

The on peak analysis

• The summary of the whole analysis of 5 models in the 5 mass bins (therefore 25 independent analyses).

The off peak analysis

- Preliminary feasibility study :
 - Only at $M_{Z'}$ = 1.5TeV. A single mass bin :800Gev-1400GeV.

Model	$\int \mathcal{L}(fb^{-1})$	Generation	Observed	Corrected
$1.5\mathrm{TeV}$				
SSM	100	$+0.077 \pm 0.025$	$+0.086 \pm 0.038$	$+0.171 \pm 0.045$
χ	100	$+0.440 \pm 0.019$	$+0.180 \pm 0.032$	$+0.354 \pm 0.039$
η	100	$+0.593 \pm 0.016$	$+0.257 \pm 0.033$	$+0.561 \pm 0.039$
ψ	100	$+0.673 \pm 0.012$	$+0.294 \pm 0.033$	$+0.568 \pm 0.039$
LR	100	$+0.303 \pm 0.022$	$+0.189 \pm 0.033$	$+0.327 \pm 0.040$

- Correction procedure still efficient but less powerful than for the on peak analysis:
 - Due to the incorrect ϵ estimate (large mass bin and too few statistic)
 - Will be improved by an increased number of MC events to extract $\boldsymbol{\epsilon}.$