SFITTER: Impact of TeVatron data

Remi Lafaye, Tilman Plehn, Dirk Zerwas CERN and LAPP, MPI Munich, LAL Orsay

> TeV4LHC Workshop CERN April 29, 2005

- Introduction
- SPS1a
- Some scenarios
- Conclusions

Introduction

SFITTER: tool to determine supersymmetric parameters from measurements Models: MSUGRA, MSSM, GMSB, AMB

The workhorses:

- Mass spectrum generated by SUSPECT (new version interfaced) or SOFTSUSY
- Branching ratios by MSMLIB
- NLO cross sections by Prospino2.0
- MINUIT

The Technique:

GRID (multidimensional to find a non-biased seed, configurable)
subsequent FIT

Other approaches:

- Fittino (Bechtle et al)
- Interpolation (Polesello)
- Analytical calculations (Kneur et al, Kalinowski et al)
- Hybrid (Porod)

Beenakker et al

Assumptions for the following:

- SUSPECT used to generate central mass values
 - χ^2 meaningless, will not be quoted
- SUSPECT mode:
 - high precision Higgs
 - sfermion masses 0.01% (? acc to manual)
- nominal theoretical errors:
 - Higgs mass ±3GeV (S. Heinemeyer et al.)
 - sfermion see above, but 3% between versions possible
 - ignored for the new work presented today
- The model:
 - a restricted number of measurements will be available, restrict number of parameters → MSUGRA
- Study errors only for the time being
 - FIT only
 - SMEAR (Gaussian of measurements) not yet used
 - correlations technically implemented, but not used

SPS1a

 $m_0 = 100 \text{GeV} \quad m_{1/2} = 250 \text{GeV} \quad A_0 = -100 \text{GeV} \quad \tan\beta = 10 \quad \text{sign}(\mu) = +$ favourable for LHC and ILC (Complementarity) 800 m [GeV] Moderately heavy gluinos and squarks 700600 \tilde{u}_L, a 500400 H⁰, A⁰ H^{\pm} Heavy and light gauginos 300 200 $\widetilde{\tau}_1$ lighter than lightest χ^{\pm} : 100 $\tilde{\chi}^0_1$ _____ • χ^{\pm} BR 100% $\widetilde{\tau}v$ 0 • χ₂ BR 90% ττ • cascade: Higgs at the limit light sleptons $\widetilde{q}_{L} \rightarrow \chi_{2} q \rightarrow \widetilde{\ell}_{R} \ell q \rightarrow \ell \ell q \chi_{1}$ of LEP reach visible

Examples of measurements at LHC

Gjelsten et al: ATLAS-PHYS-2004-007/29

$$\begin{split} \left(m_{ll}^{2}\right)^{\text{edge}} &= \frac{\left(m_{\tilde{\chi}_{2}^{0}}^{2} - m_{\tilde{l}_{R}}^{2}\right)\left(m_{\tilde{l}_{R}}^{2} - m_{\tilde{\chi}_{1}^{0}}^{2}\right)}{m_{\tilde{l}_{R}}^{2}} \\ \left(m_{qll}^{2}\right)^{\text{edge}} &= \frac{\left(m_{\tilde{q}_{L}}^{2} - m_{\tilde{\chi}_{2}^{0}}^{2}\right)\left(m_{\tilde{\chi}_{2}^{0}}^{2} - m_{\tilde{\chi}_{1}^{0}}^{2}\right)}{m_{\tilde{\chi}_{2}^{0}}^{2}} \\ \left(m_{ql}^{2}\right)^{\text{edge}}_{\min} &= \frac{\left(m_{\tilde{q}_{L}}^{2} - m_{\tilde{\chi}_{2}^{0}}^{2}\right)\left(m_{\tilde{\chi}_{2}^{0}}^{2} - m_{\tilde{l}_{R}}^{2}\right)}{m_{\tilde{\chi}_{2}^{0}}^{2}} \\ \left(m_{ql}^{2}\right)^{\text{edge}}_{\max} &= \frac{\left(m_{\tilde{q}_{L}}^{2} - m_{\tilde{\chi}_{2}^{0}}^{2}\right)\left(m_{\tilde{l}_{R}}^{2} - m_{\tilde{\chi}_{1}^{0}}^{2}\right)}{m_{\tilde{\ell}_{R}}^{2}} \\ \left(m_{qll}^{2}\right)^{\text{edge}}_{\max} &= \frac{\left(m_{\tilde{q}_{L}}^{2} - m_{\tilde{\chi}_{2}^{0}}^{2}\right)\left(m_{\tilde{\ell}_{R}}^{2} - m_{\tilde{\chi}_{1}^{0}}^{2}\right)}{m_{\tilde{\ell}_{R}}^{2}} \\ \left(m_{qll}^{2}\right)^{\text{thres}} &= \left[\left(m_{\tilde{q}_{L}}^{2} + m_{\tilde{\chi}_{2}^{0}}^{2}\right)\left(m_{\tilde{\chi}_{2}^{0}}^{2} - m_{\tilde{\ell}_{R}}^{2}\right)\left(m_{\tilde{\ell}_{R}}^{2} + m_{\tilde{\chi}_{1}^{0}}^{2}\right) - 16m_{\tilde{\chi}_{2}^{0}}^{2}m_{\tilde{\ell}_{R}}^{4}m_{\tilde{\chi}_{1}^{0}}^{2} \\ &\quad +2m_{\tilde{\ell}_{R}}^{2}\left(m_{\tilde{q}_{L}}^{2} - m_{\tilde{\chi}_{2}^{0}}^{2}\right)\left(m_{\tilde{\chi}_{2}^{0}}^{2} - m_{\tilde{\chi}_{1}^{0}}^{2}\right)\right]/\left(4m_{\tilde{\ell}_{R}}^{2}m_{\tilde{\chi}_{2}^{0}}^{2}\right) \end{aligned}$$

	.				-
	Edge	Nominal Value	Fit Value	Syst. Error	Statistical
				Energy Scale	Error
<	$m(ll)^{edge}$	77.077	77.024	0.08	0.05
	$m(qll)^{\text{edge}}$	431.1	431.3	4.3	2.4
	$m(ql)_{\min}^{\text{edge}}$	302.1	300.8	3.0	1.5
	$m(ql)_{\rm max}^{\rm edge}$	380.3	379.4	3.8	1.8
	$m(qll)^{\text{thres}}$	203.0	204.6	2.0	2.8
	$m(bll)^{\text{thres}}$	183.1	181.1	1.8	6.3

plus other mass differences and edges...

From edges to masses: System overconstrained

Coherent set of "measurements"	
for LHC (and ILC)	
"Physics Interplay of the LHC and ILC	"
Editor G. Weiglein hep-ph/0410364	

Results for 300fb⁻¹ (thus 2014):

- energy scale leptons 0.1%
- energy scale jets 1%

Polesello et al: use of χ_1 from ILC in LHC analyses improves the mass determination

	Mass, ideal	"LHC"	"LC"	"LHC+LC"
$\tilde{\chi}_1^{\pm}$	179.7		0.55	0.55
$\tilde{\chi}_2^{\pm}$	382.3	-	3.0	3.0
$\tilde{\chi}_1^0$	97.2	4.8	0.05	0.05
$\tilde{\chi}^0_2$	180.7	4.7	1.2	0.08
$\tilde{\chi}^0_3$	364.7		3-5	3-5
$\tilde{\chi}_4^0$	381.9	5.1	3-5	2.23
\tilde{e}_R	143.9	4.8	0.05	0.05
\tilde{e}_L	207.1	5.0	0.2	0.2
$\tilde{\nu}_e$	191.3	-	1.2	1.2
$\tilde{\mu}_R$	143.9	4.8	0.2	0.2
$\tilde{\mu}_L$	207.1	5.0	0.5	0.5
$\tilde{\nu}_{\mu}$	191.3	-		
$\tilde{\tau}_1$	134.8	5-8	0.3	0.3
$\tilde{\tau}_2$	210.7	-	1.1	1.1
$\tilde{\nu}_{\tau}$	190.4	-	-	-
\tilde{q}_R	547.6	7-12	-	5-11
\tilde{q}_L	570.6	8.7	-	4.9
\tilde{t}_1	399.5		2.0	2.0
\tilde{t}_2	586.3		-	
\tilde{b}_1	515.1	7.5	-	5.7
\tilde{b}_2	547.1	7.9	-	6.2
\tilde{g}	604.0	8.0	-	6.5
h^0	110.8	0.25	0.05	0.05
H^0	399.8		1.5	1.5
A^0	399.4		1.5	1.5
H^{\pm}	407.7	-	1.5	1.5

Masses versus Edges

Using masses (300fb ⁻¹):	Using edges (300fb ⁻¹) new:		
$m_0 = 100 \pm 4$ GeV	$m_0 = 100 \pm 1.2 \text{ GeV}$		
$m_{1/2} = 250 \pm 1.7 \text{ GeV}$	$m_{1/2} = 250 \pm 1.0 \text{ GeV}$		
$\tan\beta = 10 \pm 1.1$	$\tan\beta = 10 \pm 0.9$		
$A_0 = -100 \pm 33 \text{ GeV}$	$A_0 = -100 \pm 20 \text{ GeV}$		

• edges to masses is not a simple "coordinate" transformation:

- $\Delta m_0 = 1 \text{GeV} \rightarrow \text{shift } m \tilde{\ell}_R = 0.7 \text{GeV} \qquad \Delta m \tilde{\ell}_R = 5 \text{GeV}$ 0.7 GeV/5 GeV ≈ 0.14
- $\Delta m_0 = 1 \text{GeV} \rightarrow \text{shift } \mathfrak{m}\ell = 0.4 \text{GeV} \qquad \Delta \mathfrak{m}\ell = 0.08 \text{GeV} \\ 0.4 \text{GeV}/0.08 \text{GeV} \approx 5$
- $\Delta m_{1/2} = 1 \text{GeV} \rightarrow \text{shift } m\chi_2 = 0.9 \text{GeV} \qquad \Delta m\chi_2 = 5 \text{GeV}$ 0.9 GeV/5 GeV ≈ 0.2
- $\Delta m_{1/2} = 1 \text{GeV} \rightarrow \text{shift } m\ell\ell = 0.7 \text{GeV} \qquad \Delta m\ell\ell = 0.08 \text{GeV} \\ 0.7 \text{GeV}/0.08 \text{GeV} \approx 9$
- probably need correlations to get back precision from masses

LHCmax scenario:

all LHC measurements are available
10fb-1 (2008): statistical error ~ factor sqrt(30)
systematic (e-scale) ~ factor 5.4
(5‰ lepton e-scale, 5% jet e-scale)
top mass measurement from TeVatron

currently ± 4GeV
extrapolated begin of LHC ± 2GeV

using the masses

top mass precision 4GeV:

- m₀, m_{1/2} unaffected
- tan β and A_0 shifted by up to 1σ

top mass precision 2GeV:shift reduced to less than 0.7σ

LHCmax scenario: edges

- all LHC measurements are available
- 10fb-1 (2008): statistical error ~ sqrt(30)
- systematic (e-scale) ~ 0.5% leptons, 5% jets

			Errors	
Variable	Value (GeV)	Stat. (GeV)	Scale (GeV)	Total
$m_{\ell\ell}^{max}$	77.07	0.03	0.08	0.08
$m_{\ell\ell q}^{max}$	428.5	1.4	4.3	4.5
$m_{\ell q}^{low}$	300.3	0.9	3.0	3.1
$m_{\ell_a}^{high}$	378.0	1.0	3.8	3.9
$m_{\ell\ell q}^{min}$	201.9	1.6	2.0	2.6
$m_{\ell\ell b}^{min}$	183.1	3.6	1.8	4.1
$m(\ell_L) - m(\tilde{\chi}_1^0)$	106.1	1.6	0.1	1.6
$m_{\ell\ell}^{max}(\tilde{\chi}_4^0)$	280.9	2.3	0.3	2.3
$m_{\tau\tau}^{max}$	80.6	5.0	0.8	5.1
$m(\tilde{g}) = 0.99 \times m(\tilde{\chi}_1^0)$	500.0	2.3	6.0	6.4
$m(\tilde{q}_R) - m(\tilde{\chi}_1^0)$	424.2	10.0	4.2	10.9
$m(\tilde{g}) - m(\tilde{b}_1)$	103.3	1.5	1.0	1.8
$m(\tilde{g}) - m(\tilde{b}_2)$	70.6	2.5	0.7	2.6

mtop = 175 GeV $m_0 = 100 \pm 6 \text{ GeV}$ $m_{1/2} = 250 \pm 5 \text{ GeV}$ $\tan\beta = 10 \pm 5$ $A_0 = -100 \pm 110 \text{ GeV}$ **mtop = 179GeV** $m_0 = 97.9 \pm 6 \text{ GeV}$ $m_{1/2} = 250 \pm 6 \text{ GeV}$ $\tan\beta = 7.5 \pm 2$ $A_0 = -37 \pm 140 \text{ GeV}$ **mtop** = 171GeV $\mathbf{m}_0 = 101 \pm 6 \, \mathrm{GeV}$ $m_{1/2} = 249 \pm 5 \text{ GeV}$ $\tan\beta = 12.6 \pm 6$ $A_0 = -152 \pm 88 \text{ GeV}$

Internal information in the edges leads to a higher precision • ultimate top mass precision introduces less than 0.7σ uncertainty in SUSY parameter determination

No surprise: less information, less precision, even for mtop 4GeV error negligeable effect given the errors

LHCminimal plus Higgs scenario:

- Higgs is sitting on the edge of LEP exclusion
- WH+ZH 6 events per fb⁻¹ and experiment
- end of Run: $\Delta m_h = \pm 2 GeV$
- adding background: $\Delta mHiggs = \pm 4-5GeV$
- minimal scenario LHC

plus TeVatron Higgs hint of 4.5GeV precision:

No Higgs, edges from the LHC:	Higgs hint plus edges from the LHC:
$m_0 = 100 \pm 14 \text{ GeV}$	$m_0 = 100 \pm 9 \text{ GeV}$
$m_{1/2} = 250 \pm 10 \text{ GeV}$	$m_{1/2} = 250 \pm 9 \text{ GeV}$
$\tan\beta = 10 \pm 144$	$\tan\beta = 10 \pm 31$
$A_0^{-} = -100.37 \pm 2400 \text{ GeV}$	$A_0 = -100 \pm 685 \text{ GeV}$

A Higgs hint mass measurement would lead to an improvement of m₀, tanβ and A₀ (but the latter two are still essentially undetermined)!

Conclusions

- SFITTER updated with new SUSPECT
- use of thresholds and masses now possible
- use of thresholds and mass differences improves significantly the determination of m_0
- SPS1a4TeVatron:
 - ultimate TeVatron top quark measurement (2GeV)
 will reduce uncertainties on the SUSY parameter determination
 due to the top quark mass measurement to less than 1σ ^(C)
 - if TeVatron can detect a hint of the Higgs and measure its mass with a precision of 4-5GeV
 - a positive impact on the parameter determination can be observed

Thanks to Volker for the Higgs hint!