SUSY searches: where Tevatron may help LHC analyses

SABINE KRAML

CERN PH-TH

(APART Fellow of the Austrian Academy of Sciences)

TEV4LHC workshop, CERN, 28-30 April 2005

SUSY searches: where Tevatron may help LHC analyses - p. 1/23

Overview

- Classic SUSY search at Tevatron / LHC
- Light stop
- Light non-standard Higgs
- Hint for large aneta from $B o \mu\mu$

Classic SUSY search - Tevatron

- $p\bar{p} \rightarrow \tilde{g}\tilde{g}, \tilde{q}\bar{\tilde{q}}$ production with $\tilde{g} \rightarrow q\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}^0, q'\tilde{\chi}^{\pm}$
 - jets + E_T signature
 - reach in $m_{ ilde{g}}$ up to $\sim 400~{
 m GeV}~(m_{1/2}\sim 150)$ with 2 fb $^{-1}$
- $p\bar{p} \rightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ production \rightsquigarrow trilepton signature

•
$$\tilde{\chi}_2^0 \to \tilde{l}^{\pm} l^{\mp}, Z^0 \tilde{\chi}_1^0 \to l^{\pm} l^{\mp} \not\!\!\! E_T$$

- reach in $m_{ ilde{\chi}_1^\pm}$ up to $\sim 200~{
 m GeV}$ with 2 fb $^{-1}$
- Specialized searches for GMSB, AMSB, RPV,, cases
- Limits are in general very model dependent; non-obs of 3l signal does not lead to lower limit on $m_{\tilde{v}_{\tau}^{\pm}}!$

Tevatron reach in mSUGRA

trilepton signature

[SUGRA WG for RUN II, hep-ph/0003154]

Classic SUSY search - LHC

- Huge $pp \rightarrow \tilde{g}\tilde{g}, \tilde{q}\tilde{q}, \tilde{g}\tilde{q}$ cross section \rightarrow jets + E_T covers squark and gluino masses up to 2–3 TeV.
- Long decay chains

- Search for 2I SFOS, 2I SS, 1I inclusive signatures
- Mass determinations through kinematic endpoints (c.f. talk by Dirk Zerwas)
- $ilde{b} o b ilde{\chi}^0_{1,2}$ is OK but no successful analysis yet for $ilde{t}$
- Direct production of $\tilde{\chi}$'s and \tilde{l} 's has (too) low rate
- Large $\tan\beta$: $l \to \tau$, challenging!

LHC expectation for SPS1a

 $m_0=100,\;m_{1/2}=250,\;A_0=-100,\; aneta=10,\;\mu>0$

[Gjelsten, Miller, Osland, hep-ph/0501033]

LHC reach in mSUGRA

[CMS, Abdullin et al, hep-ph/9806366]

Light Stop

Motivation: sufficiently strong first order phase transition to preserve generated baryon asymmetry

 $egin{aligned} m_h \lesssim 120 \ {
m GeV} \ m_{ ilde t_1} \lesssim 165 \ {
m GeV} \ {
m moderate } aneta \sim 5 \ {
m [Carena, Quiros, Wagner, 1998]} \end{aligned}$

NB: Right Ωh^2 from $\tilde{\chi}_1^0 \tilde{t}_1$ coannihilation: $m_{\tilde{t}_1} - m_{\tilde{\chi}_1^0} \sim 30$ GeV. Otherwise other contributions from e.g. light sleptons needed.

$ilde{t}_1$ rates and signatures

• Large rate of
$$par{p} o ilde{t}_1 ar{ ilde{t}}_1$$

- Other modes: $\tilde{t}_1 \to b \tilde{\chi}_1^{\pm}, \ b W \tilde{\chi}_1^0, \ b l \tilde{\nu}$
- If gluino mass $\sim 300-400$ GeV: $p\bar{p} \rightarrow \tilde{g}\tilde{g} \rightarrow tt \,\tilde{t}_1\tilde{t}_1$ ca. 50% of SUSY cross section

- Possible discovery channel at Tevatron
- At LHC: $pp \to \tilde{g}\tilde{g} \to tt \ \tilde{t}_1\tilde{t}_1, pp \to \tilde{g}\tilde{b} \to tW\tilde{t}_1\tilde{t}_1, ...$ VERY difficult if stop is light

Tevatron reach for $ilde{t}_1 o c ilde{\chi}_1^0$

[Balazs, Carena, Wagner, hep-ph/0403224]

Differences in spectrum codes

WMAP allowed regions with a light stop in mSUGRA

[Belanger, SK, Pukhov, hep-ph/0502079]

'	ISAJET 7.71	SOFTSUSY1.9	SPHENO 2.2.2	SUSPECT 2.3
$ ilde{\chi}_1^0$	140.8	143.2	142.5	143.0
$ ilde{ au}_1$	156.1	157.8	158.9	160.7
${ ilde t_1}$	153.7	173.3	172.7	109.7
h^0	108.8	114.1	115.6	108.3
$m_{ ilde{ au}_1}-m_{ ilde{ ilde{\chi}}_1^0}$	15.3	14.6	16.4	17.7
$m_{ ilde{t}_1}-m_{ ilde{\chi}^0_1}$	12.9	30.1	30.2	-33.3
Ωh^2	0.004	0.116	0.120	—

 $m_0 = 161~{
m GeV},\,m_{1/2} = 350~{
m GeV},\,A_0 = -1400~{
m GeV},\ aneta = 10,\,\mu > 0,\,m_t = 175~{
m GeV}$

Light non-standard Higgs

- In scenarios beyond the MSSM, the h couplings to Z can be suppressed; LEP limit of $m_h > 114$ GeV no longer applies
- Examples:
 - MSSM with CP-violating phases
 - NMSSM with light pseudoscalars (low fine tuning)
- Consequence: $\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 \phi_i \to \tilde{\chi}_1^0 b \overline{b} (\tau \tau)$ or even $\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 \phi_i \to \tilde{\chi}_1^0 \phi_1 \phi_1 \to \tilde{\chi}_1^0 4 b (4\tau)$ can have large BR

★ impacts Tevatron and LHC analyses of SUSY decay chains

- Need to cover light (CPV) Higgs, light pseudoscalars, Higgs-to-Higgs decays: $\phi_2 \rightarrow \phi_1 \phi_1 \rightarrow 4b$ or 4τ
- Opportunity for searches at the Tevatron?

(c.f. CPNSH workshop)

LEP limit on CPV MSSM Higgs

MSSM CP phases \rightsquigarrow mixing of $(h^0, H^0, A^0) \rightarrow (h_1, h_2, h_3)$ $O_{ij}^2 \sim rac{m_t^4}{v^2} rac{{
m Im}(\mu A)}{32 \pi^2 M_{SUSY}^2}$ 180 (A¹⁸⁰ (A¹⁷⁰) (B¹⁷⁰) (B¹ $tan\beta$ MSSM CPX **MSSM CPX** $m_{\star} = 179.3 \text{ GeV}$ m₊ = 179.3 GeV 150 10 140 **Excluded** 130 Excluded 120 110 **Theoretically Theoretically** inaccessible 1 100 90 120 140 100 25 50 75 125 20 40 60 80 100 m_{H1} (GeV) m_{H1} (GeV)

[LHWG-Note-2004-01]

CPV can drastically change Higgs/SUSY production rates and BR's

BR $(h_2 \rightarrow h_1 h_1)$ in **CPV MSSM**

[Sven Heinemeier] \rightarrow Sven's talk in the afternoon

$BR(h \rightarrow aa)$ in NMSSM

$$\mu \hat{H}_1 \hat{H}_2
ightarrow \lambda \hat{S} \hat{H}_1 \hat{H}_2 + rac{\kappa}{3} \hat{S}^3$$

3 neutral scalar, 2 pseudoscalar, 2 charged Higgs bosons

see discussion in [Ellwanger, Gunion, Hugonie, hep-ph/0503203]

$BR(B_s \rightarrow \mu \mu)$

- Present bound: BR $(B_s
 ightarrow \mu^+ \mu^-) < 5.8 imes 10^{-7}$
- SM prediction: BR $(B_s
 ightarrow \mu^+ \mu^-) = (3.4 \pm 0.5) imes 10^{-9}$
- In SUSY, the $B \to \mu \mu$ branching ratio grows like $\tan^6 \beta$, orders of magnitude enhancement, BR $\sim 10^{-7}$ for $\tan \beta = 50$
- If deviation from SM prediction observed at the Tevatron:
 * large tan β interpretation in SUSY *
- Consequence: expect many *τ*'s in SUSY decay chains at Tevatron and LHC → optimize *τ* identification, want good *τ* energy and polarization measurements, etc.

 $BR(B_s \rightarrow \mu \mu)$

[Dedes, Dreiner, Nierste, hep-ph/0108037]

SUSY searches: where Tevatron may help LHC analyses - p. 18/23

Summary

- Light stop, $m_{ ilde{t}_1} < m_t$, motivated by BAU
 - Some of the cosmologically interesting region can be covered by Tevatron search
 - Neutralino-stop coannihilation region however not covered ($\Delta m \sim 30~{
 m GeV}$)
- Light non-standard Higgs, $m_\phi \ll 114~{
 m GeV}$
 - Can impact SUSY decay chains by $\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 \phi_i$
 - Opportunity for Tevatron Higgs searches; Higgs-to-Higgs decays however not yet studied
- Deviation from SM in $B \to \mu\mu$: SUSY interpretation would suggest large $\tan\beta \rightsquigarrow \tau$'s in SUSY decay chains
- In addition: experience with real data, trigger, particle identification, etc. G. Polesello's talk at TEV4LHC in Feb05

backup

LHC reach in mSURGA

[CMS, Abdullin et al, hep-ph/9806366]

Tevatron reach for $ilde{t}_1 o b ilde{\chi}_1^\pm$

[SUGRA WG for RUN II, hep-ph/0003154]

Tevatron reach for $\tilde{t}_1 \rightarrow b l \tilde{\nu}$

[SUGRA WG for RUN II, hep-ph/0003154]