TeV4LHC, CERN, April 2005

First detailed study on the CMS SUSY discovery potential with two same sign muons in the mSUGRA model

Salavat Abdullin (FNAL)
Darin Acosta (UF)
Paolo Bartalini (UF)
Rick Cavanaugh (UF)
Alexey Drozdetskiy (UF)
Andrey Korytov (UF)
Guenakh Mitselmakher (UF)
Yuriy Pakhotin (UF)
Alexander Sherstnev (MSU)
Bobby Scurlock (UF)

Outline

\triangleright Introduction
\triangleright Parameter space
\triangleright References
\triangleright Tools
\triangleright Backgrounds considered
\triangleright Signal points
\triangleright Cut variables selection
\triangleright Cuts "optimization"
\triangleright Selected cut sets
\triangleright Results: significance, sensitive area
\triangleright Results: stability
\triangleright Summary and Prospects
Note: all the results shown here approved by CMS in June'04. A few comments on current work will be given in "Prospects"

mSUGRA $\left(\mathrm{m}_{0}, \mathrm{~m}_{1 / 2}\right)$ plane

$\tan \beta=10, \mu>0$

mSUGRA - GUT sub-model of MSSM - is a popular simplification \triangleright only 5 parameters $\left(\mathrm{m}_{0}, \mathrm{~m}_{1 / 2}, \tan \beta, \mathrm{~A}_{0}\right.$, sign $\left.\mu\right)$

STISV noints considered in this study

	m 12	m 0	$\tan \beta$
1	500	107	10
2^{*}	300	1330	10
3	700	149	10
4	210	150	10
5	850	181	10
6	285	210	10
7	700	2155	10
8	360	230	10
9	900	2530	10
10	240	330	20
11	400	85	10
12	300	1200	35
13	500	1620	35
14	1000	2520	35
15	1000	2715	10
16^{*}	1500	3442	10
17	2000	4192	10
18	2500	4942	10
19	250	60	10
20	300	65	10

Signature choice

\triangleright For this study the "2 Same Sign Muons" signature was chosen
\triangleright theoretical studies for Tevatron
\triangleright hep-ph/9904282, "Supersymmetry Reach of the Tevatron via Trilepton, Like-Sign Dilepton and Dilepton plus Tau Jet Signatures", K.T.Matchev, D.M.Pierce
\triangleright experimental studies at Tevatron
\triangleright see e.g. theses by M.Worcester and A.Yurkewicz
\triangleright simple and clear trigger objects
\triangleright reduced number of background events/processes in comparison to "multi-jets only" signatures

Luminosity

\triangleright In this study all calculations are done for the integral luminosity of $10 \mathrm{fb}^{-1}$

Tools

\triangleright To calculate coupling constants, cross sections for SUSY processes: ISAJET
\triangleright http://www.phy.bnl.gov/~isajet/
\triangleright To calculate NLO corrections for SUSY processes: PROSPINO
\triangleright hep-ph/9611232
\triangleright For event generation: CompHEP $\left(Z / \gamma^{*} b B\right.$, Singletop processes), PYTHIA (SUSY, tt, ZZ, ZW, WW)
\triangleright hep-ph/9908288 (CompHEP)
\triangleright http://www.thep.lu.se/~torbjorn/Pythia.html
\triangleright Full CMS detector simulation was used in this study: CMSIM, ORCA
\triangleright http://cmsdoc.cern.ch/cmsim/cmsim.html
\triangleright http://cmsdoc.cern.ch/cmsreco/

Cross sections, event numbers: SM processes

	tb	tqb	$\overline{t b}$	$\overline{t q b}$	ZZ	TW	WW	$\overline{t \boldsymbol{t}}$	Zb \bar{b}	All
σ, pb	0.212^{*}	5.17^{*}	0.129^{*}	3.03^{*}	$18(\mathrm{NLO})$	26.2	70.2	$886(\mathrm{NLO})$	$232(\mathrm{NLO})^{*}$	
N 1	2,120	51,700	1,290	30,300	180,000	262,000	702,000	$8,860,000$	$2,320,000$	
N 2	112	1,798	71	1,067	256	727	39.7	142,691	12,924	160,000

\triangleright Other process main contribution into background
\triangleright generated wmicompricr

	WVIW	ZWW	ZZW	ZZZ	$W W W W$	ZWWW	ZZWW	ZZZW	2287
o,pb	0.129	0.0979	0.0305	0.00994	0.000574	0.000706	0.000442	0.000572	0.0000161
入1	1,290	979	305	99.4					
N2	<15	<10	<3	<1					
π	$t \bar{t} W$	$\bar{t} \bar{t}$	$t \bar{t} W W$	$t \overline{t z W}$	$t \bar{t} Z Z$		- ne	igible	
б, pb	Q 556	0.65	neg.	neg.	neg.	contri	bution		
N1	5,560	6.500							
N2	<200	<200	-						

\triangleright Notations: all but $\bar{t} W, t \bar{t} Z$ are negligible
\triangleright N1 - total number of expected events for integral luminosity of 10fb ${ }^{-1}$
$\triangleright \mathrm{N} 2$ - number of events after pre-selection (two same sign muons, $\mathrm{P}_{\mathrm{T}}>10 \mathrm{GeV}$)

Cross sections, event numbers: SUSY processes

	SUSY point number:									
	1	2	3	4	5	6	7	8	9	10
σ, pb	1.21	2.43	0.161	83.2	0.0511	17.6	0.0354	5.21	0.00911	31.8
N1	1,210	24,300	1,610	832,000	511	176,000	354	52,100	91	318,000
N2 (NLO)	470	1470	66	14,600	20.7	4,330	18,3	1,520	2.71	11,700
Significance	1.2	3.6	0.16	35.8	0.05	10.8	0.04	3.8		28.8
S/B	0.0029	0.0092	0.00041	0.091	0.00013	0.027	0.00011	0.0095		0.073

	SUSY point number:									
	11	12	13	14	15	16	17	18	19	20
σ, pb	2.27	2.77	0.214	0.00527	0.00504	0.00048	0.00006	0.000008	40.8	15.9
N1	22,700	27,700	2,140	52.7	50.4	4.8	0.6	0.08	408,000	159,000
N2 (NLO)	961	2,210	188						9,200	4,570
Significance	2.4	4.6	0.46						22.6	11.4
S/B	0.006	0.014	0.0012						0.058	0.029

- excluded points

\triangleright Notations:

\triangleright N1 - total number of expected events for integral luminosity of $10 \mathrm{fb}^{-1}$
\triangleright N2 - number of events after pre-selection (two same sign muons, $\mathrm{P}_{\mathrm{T}}>10 \mathrm{GeV}$)
\triangleright Significance, $S_{12}=2\left(\sqrt{N_{S}+N_{B}}-\sqrt{N_{B}}\right) \quad$ (S.I.Bityukov,N.V.Krasniov)
\triangleright S/B - ratio: N_{S} / N_{B}

Diagram examples

\triangleright Signal...
Background...

\triangleright Variables for cuts:
\triangleright Missing E_{T}
\triangleright Jets E_{T}
\triangleright Muon P_{T}, Muon Impact Parameter
\triangleright Plus: Muon Isolation, Muon η, Jet η, number of jets/muons, ...

Event kinematics: SM vs. SUSY, example

Analysis cuts

\triangleright For chosen cut variables, several values for optimization were chosen:
\triangleright Missing $\mathrm{E}_{\mathrm{T}}: 0,100,150,200,250,400,500 \mathrm{GeV}$
$\triangleright \mathrm{E}_{\mathrm{T}} \mathrm{jet}_{1}: 0,70,100,200,300,400 \mathrm{GeV}$
$\triangleright \mathrm{E}_{\mathrm{T}} \mathrm{jet}_{3}: 0,30,50,80,100,170,250 \mathrm{GeV}$
$\triangleright \mathrm{P}_{\mathrm{T}} \mathrm{\mu}_{1}: 10,20,30,60,100,150 \mathrm{GeV} / \mathrm{c}$
$\triangleright \mathrm{P}_{\mathrm{T}} \mu_{2}: 10,15,20,50,80 \mathrm{GeV} / \mathrm{c}$
$\triangleright I P \mu_{\min }: N / A, 0.005,0.0015,0.0005 \mathrm{~cm}$
$\triangleright I P \mu_{\text {max }}: N / A, 0.1,0.03,0.01,0.005 \mathrm{~cm}$
\triangleright For each cuts set (Missing $\mathrm{E}_{\mathrm{T}}, \mathrm{E}_{\mathrm{T}} \mathrm{jet}_{1}, \mathrm{E}_{\mathrm{T}} \mathrm{jet}_{3}, \mathrm{P}_{\mathrm{T}} \mathrm{\mu}_{1}$, $\left.\mathrm{P}_{\mathrm{T}} \mu_{2}, I P \mu_{\text {min }}, I P \mu_{\max }\right)$
\triangleright Values of Significance, S/B and expected event numbers ($\mathrm{N}_{\text {Final }}$) for $10 \mathrm{fb}^{-1}$ calculated
\triangleright about 176,000 cut sets used
\triangleright Choice of final sets "optimized"

Final set choice "optimization": example

\triangleright Plot Significance for all sets of cuts...
\triangleright Then choose an "optimal" region: several iterations...
\triangleright Finally, choose a particular set...

Sign	Significance vs. cuts set number	nber
April '05	Alexey Drozdetskiy, University of Florida, CMS	12

Analysis cuts

\triangleright Chosen sets (in addition to the "signature cut": P_{T} of both same sign $\mu>10 \mathrm{GeV}$):
\triangleright Set \#1:
\triangleright Missing $\mathrm{E}_{\mathrm{T}}>200 \mathrm{GeV}$,
$\triangleright \mathrm{E}_{\mathrm{T}} \mathrm{jet}_{3}>170 \mathrm{GeV}$,
$\triangleright \mathrm{P}_{\mathrm{T}} \mu_{1}>20 \mathrm{GeV}$
\triangleright Set \#2:
\triangleright Missing $\mathrm{E}_{\mathrm{T}}>100 \mathrm{GeV}$,
$\triangleright \mathrm{E}_{\mathrm{T}} \mathrm{jet}_{1}>300 \mathrm{GeV}$,
$\triangleright \mathrm{E}_{\mathrm{T}} \mathrm{jet}_{3}>100 \mathrm{GeV}$
\triangleright All of the following results were done for these two sets

Results (example): cut set \#2

SET 2	SM	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
N final	432 ± 8.8	184 ± 9.3	560 ± 29	30.4 ± 1.4	1590 ± 152	9.6 ± 0.45	1030 ± 67
Signif		8.06	21.4	1.44	48.4	0.46	35
S/B		0.43	1.3	0.07	3.7	0.002	2.4
SET 2	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	10	11	$\mathbf{1 2}$	$\mathbf{1 3}$
N final	8.31 ± 0.39	530 ± 28	n / a	1950 ± 151	322 ± 18	781 ± 42	86.9 ± 4
Signif	0.4	20.5	n / a	56.1	13.4	28.1	4
S/B	0.019	1.2	n / a	4.5	0.75	1.8	0.2
SET 2	$\mathbf{1 4}$	15	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	19	$\mathbf{2 0}$
N final	n / a	1220 ± 106	996 ± 67				
Signif	n / a	39.8	34				
S/B	n / a	2.8	2.3				

Monte Carlo statistical errors shown for number of events after all cuts (N final)

All final events accepted by L1 and HLT.
$\triangleright \mathrm{L} 1$: single μ with $\mathrm{P}_{\mathrm{T}}>14 \mathrm{GeV}$, di- μ with $\mathrm{P}_{\mathrm{T}}>3 \mathrm{GeV}$
\triangleright HLT: di- μ with $\mathrm{P}_{\mathrm{T}}>7 \mathrm{GeV}$

Results: significance

\triangleright Number of points out of reach for $10 \mathrm{fb}^{-1}$ for two cut sets varies: 910
\triangleright Significance < 5
\triangleright Potential "discovery points" for $10 \mathrm{fb}^{-1}$
\triangleright Significance > 5
\triangleright in addition for those points
\triangleright S/B > 0.4 (a 40\% excess of events or more over expected number of the SM events)

	Significance	
	SET 1	SET 2
1	9.05	8.06
2	20.8	21.4
3	2	1.44
4	25	48.4
5	0.77	0.46
6	20.6	35
7	0.78	0.4
8	15.5	20.5
9	n / a	n / a
10	31.7	56.1
11	12.1	13.4
12	27.1	28.1
13	6	4
14	n / a	n / a
15	n / a	n / a
16	n / a	n / a
17	n / a	n / a
18	n / a	n / a
19	25.6	39.8
20	20.6	34

Results: sensitive area at $10 \mathrm{fb}^{-1}$

\triangleright Many points will be visible with $\int \mathrm{L} \ll 10 \mathrm{fb}^{-1}$
\triangleright Significance for many points >> 5 for $\int \mathrm{L}=10 \mathrm{fb}^{-1}$

First estimate of systematic effects (preliminary)

\triangleright To estimate stability of the results, a variation has been made:
$\triangleright+30 \%$ SM events AND -30\% SUSY events at the same time
\triangleright only one background process survive after final cuts: $t \bar{t}$
\triangleright expected precision of measuring its cross section (including theoretical systematic) is about 10%
$\triangleright+20 \%$ (and -20%) shift in cut values simultaneously was tried
\triangleright Only one "SUSY discovery" point (\#13) goes out of reach

Summary

\triangleright mSUGRA model was used for the study
$\triangleright \tan \beta=10, \operatorname{sign}(\mu)>0, A_{0}=0$
\triangleright Many benchmark points are in sensitive area for $\mathrm{L} \lll 1 \mathrm{Ofb}^{-1}$
\triangleright up to 600 GeV in $\mathrm{m}_{1 / 2}$ and at least up to 1600 GeV in m_{0}
\triangleright Full detailed simulation, trigger emulation and reconstruction was used
\triangleright Results are optimistic for SUSY discovery

Prospects (work in progress)

\triangleright We plan to do further optimization
\triangleright other cut variables may be used for S/B and Significance optimization, e.g.:
$\triangleright \mu$ isolation
\triangleright b-tagging
$\triangleright \eta$ of jets, η of muons
\triangleright Other backgrounds to consider
\triangleright QCD multi-jet production (including fake muons contribution)
\triangleright Extend μ-acceptance in off-line reconstruction up to 2.4 (now used up to 2.1)
\triangleright about 30% more signal events
\triangleright Systematic effects will be addressed in details and included into the significance calculation
\triangleright More sophisticated optimization algorithm (like genetic one) may be used for optimization
\triangleright Other SUSY point (and models) may be studied

Thanks

\triangleright Andreas Birkedal (Cornell)
\triangleright Nancy Marinelli (University of Athens)
\triangleright Konstantin Matchev (UF)
\triangleright Luc Pape (CERN)
\triangleright Albert de Roeck (CERN)
\triangleright Michael Spira (PSI)
\triangleright Maria Spiropulu (CERN)
\triangleright Grzegorz Wrochna (Soltan Institute for Nuclear Studies)

ADDENDUM

Analysis scheme

Tools

Generators: σ (LO/NLO), coupling constants, matrix elements
Generators: showering, event development
Full detector simulation
Trigger emulation
Full events reconstruction
Analysis: optimization of significance and $\mathrm{N}_{\mathrm{S}} / \mathrm{N}_{\mathrm{B}}$
\rightarrow variables for cuts choice
\rightarrow cuts optimization
results, error analysis (stat. \& system.)

Technical details: generators

\triangleright From PYTHIA 6.2 manual: "ISASUSY... provides a more precise solution..." than possible option for mSUGRA in PYTHIA
\triangleright ISAJET $7.69+$ PYTHIA $6.220 \rightarrow$ compilation \rightarrow private version \rightarrow CMKIN 1_3_0 + kis_user.F
\triangleright CompHEP 4.2p1 \rightarrow CMKIN 2_0_1 (PYTHIA 6.220) + kis_user.F

More technical details: simulation/reconstruction

\triangleright CMSIM_133
$\triangleright|\eta|<5.3$, all $\varphi, 0.05<P_{T}$
\triangleright ORCA 7_3_0
\triangleright Write: SimHits, RecHits \rightarrow ROOT DB
\triangleright MuonReco package \rightarrow *.root
\triangleright no off-line Muon analysis yet
\triangleright L3MuonReconstructor used
\triangleright jpgcode (jets and MET reconstruction) \rightarrow *.root
\triangleright iterative cone algorithm used for jet reconstruction
\triangleright cone size 0.5
\triangleright Relevant parts of the both jpgcode.root and MuonReco.root were merged and written to one file
\triangleright In the analysis jet E_{T} corrections were also applied

Results, Cuts Set \# 1

SET 1	$\mathbf{S M}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
\mathbf{N} final	69.5 ± 6.0	95.9 ± 6.7	282 ± 20	17.7 ± 1.1	365 ± 73	6.54 ± 0.37	277 ± 35
Signif		9.05	20.8	$\mathbf{2}$	25	0.77	20.6
S/B		1.38	4.06	0.25	5.26	0.094	4

SET 1	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$
\mathbf{N} final	6.7 ± 0.35	188 ± 17	n / a	515 ± 78	137 ± 11	409 ± 30	58.8 ± 3.3
Signif	0.78	15.5	n / a	31.7	12.1	27.1	6
S/B	0.096	2.71	n / a	7.41	1.98	5.89	0.85

SET 1	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$
N final	n / a	377 ± 59	279 ± 36				
Signif	n / a	25.6	20.6				
S/B	n / a	5.43	4.01				

SUSY points considered in this study

Results: sensitive area at $10 \mathrm{fb}^{-1}$

\triangleright Many points will be visible with $\int \mathrm{L} \ll 10 \mathrm{fb}^{-1}$
\triangleright Significance for many points >>5 for $\int \mathrm{L}=10 \mathrm{fb}^{-1}$

