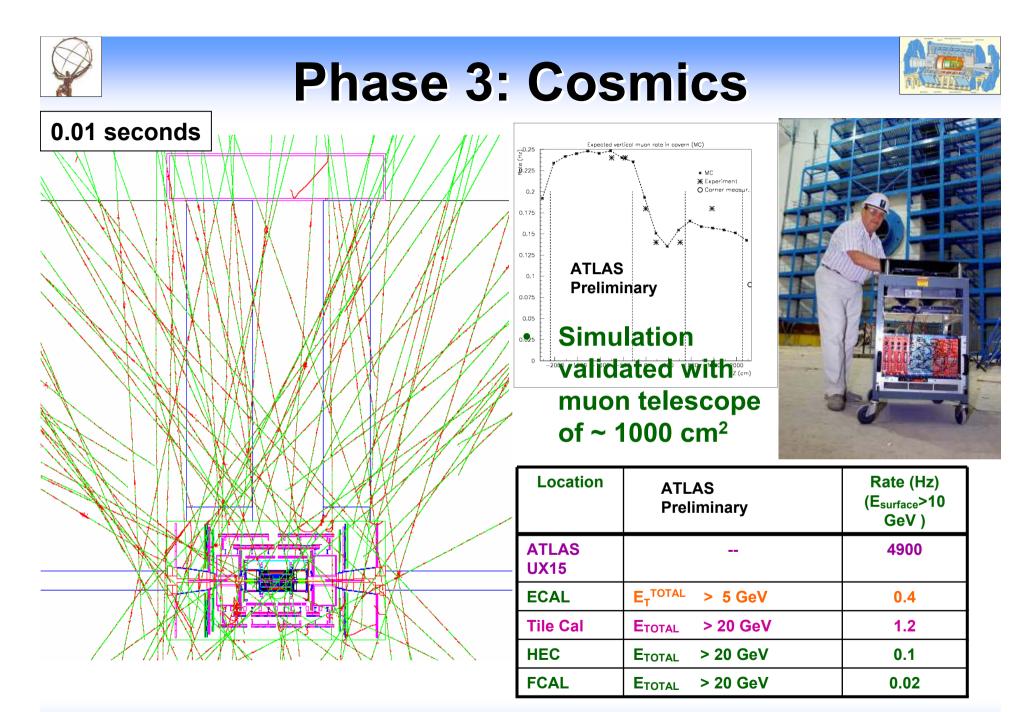


Commissioning with Physics Data at ATLAS

Dan Tovey for the ATLAS Collaboration

Dan Tovey

1

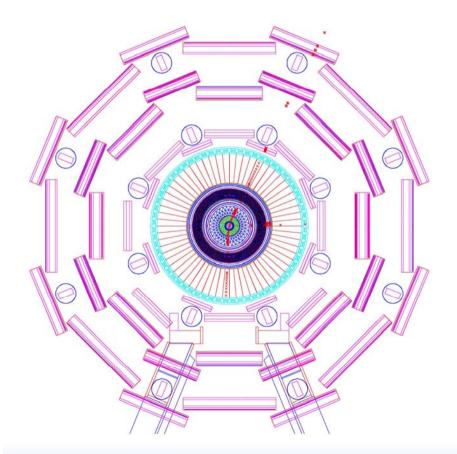


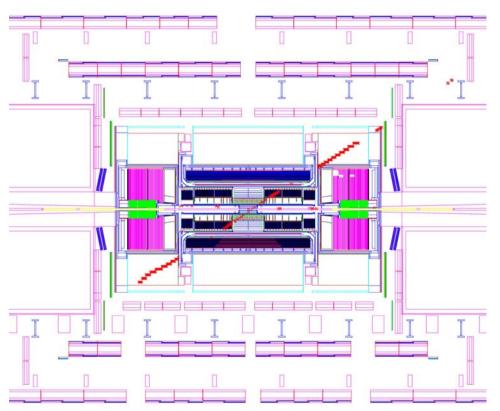
Strategy

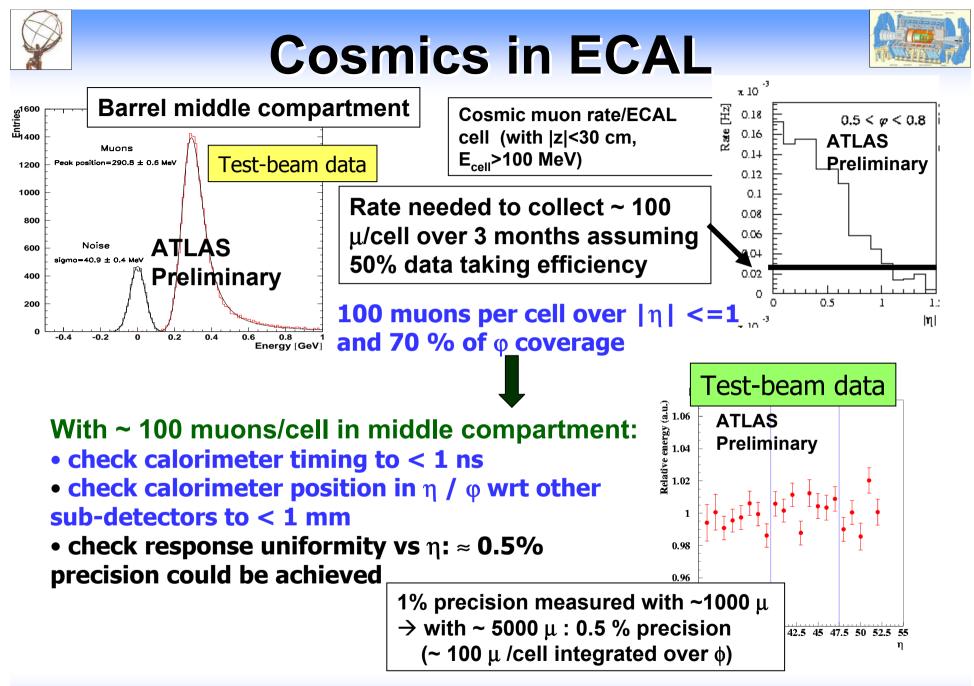
- Commissioning with physics data proceeds in four phases:
 - <u>Phase 3</u> : Cosmics running
 - ➔ initial physics alignment / calibration of the detector
 - ➔ debugging of sub-systems, mapping dead channels etc.
 - Phase 4 : One beam in the machine
 - ➔ beam-halo muons and beam-gas events
 - ➔ more detailed alignment / calibration etc.
 - <u>Phase 5</u> : First pp collisions : prepare the trigger and the detector
 - → tune trigger menus / measure efficiencies
 - ➔ begin to measure reconstruction efficiencies, fake rates, energy scales, resolutions etc.
 - <u>Phase 6</u> : Commissioning of physics channels
 - → Improve measurements
 - → begin to understand backgrounds to discovery channels ...
- Thinking now about what we can learn in each phase / how to use
 the data in practice
- Will give a few examples of recent work / work in progress ...

Pre-collision Phases

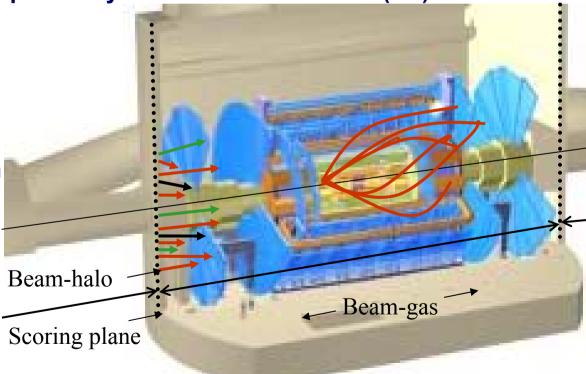
Dan Tovey


University of Sheffield




'Typical' Event

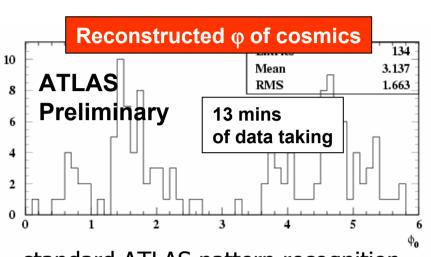
- One track reconstructed in Muon chambers
- Two tracks reconstructed in Inner Detector
- Will happen every ~ 10 s



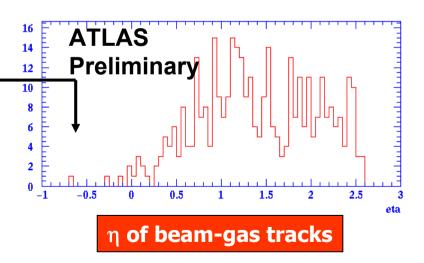
Phase 4: Single-beam period

- Beam-halo
 - Low p_T particles from machine.
 - Simulation of machine background by machine experts (V. Talanov):
 - based on MARS; machine optics V 6.4
 - scoring plane at the cavern entrance before ATLAS shielding (z = \pm 23 m from IP)
 - Then particles are transported by ATLAS full simulation (G3)
- Beam-gas
 - Vacuum not perfect
 - p(7 TeV) on p(rest)
 - vertices uniformly distributed over ± 23 m
 - σ(pH, pC, pO, ...) ∝
 σ(pp)xA^{0.7} (inelastic only)
 - vacuum estimate:
 ~3x10⁻⁸ Torr (~10¹⁵ mol/m³)

Cosmics & Beam Gas in ID


7

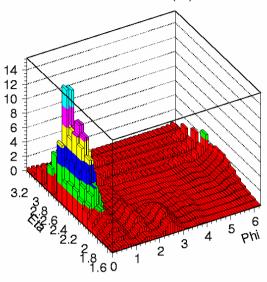
Cosmics : O (1Hz) tracks in Pixels+SCT+TRT

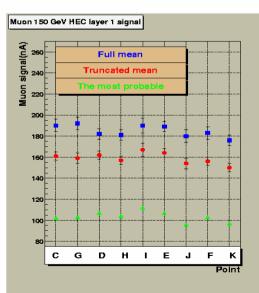

- useful statistics for debugging readout, maps of dead modules, etc.
- check relative position Pixels/SCT/TRT and of ID wrt ECAL and Muon Spectrometer
- first alignment studies: may achieve statistical precision of ~ 10 μm in parts of Pixels/SCT
- first calibration of R-t relation in straws

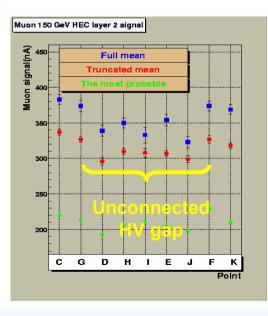
Beam-gas :

- ~ 25 Hz of reconstructed tracks with p_T > 1 GeV and |z|<20 cm
- \rightarrow >10⁷ tracks (similar to LHC events) in 2 months
- enough statistics for alignment in "relaxed" environment → exceed initial survey precision of 10-100 µm

standard ATLAS pattern recognition (no optimisation for cosmics ...)

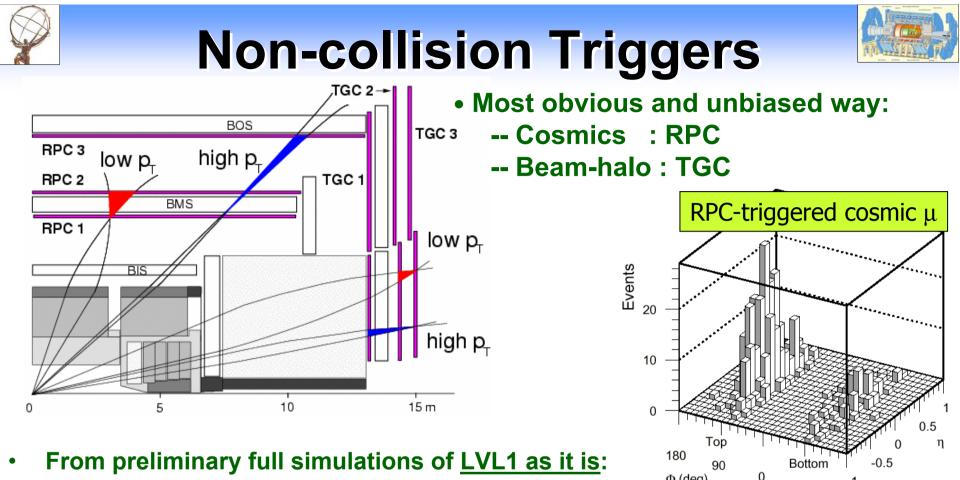



Beam Halo in HEC



Hit rate distribution (Hz)

- Halo muons:
 - essentially parallel to z-axis
 - look much like test-beam μ (esp for endcap)
- HEC-standalone efficiency for muon identification: ~ 25%, S/N ~ 4
 - Max(Min) Rate ~ 3(0.02) Hz / cell
 - 5 x 10 6 (3 x 10 4) μ in 2 months @ 30 %



From test-beam studies:

- Cell timing: <1 ns</p>
- Cell Energy: <1 %</p>
- Cell, module and wheel alignment: few mm
- Detect unconnected HV gaps

Dan Tovey

8

- -- Cosmic muons : ~ 100 Hz pass low- p_T RPC LVL1 trigger
- -- Beam-halo muons : ~ 1 Hz pass low- p_T TGC LVL1 trigger
 - small enough → not worrying for LHC data taking
 - high enough → useful samples (e.g. > 10⁸ cosmics evts in 3 months if ε=50%) for commissioning (triggered muons cross the interaction region)
- Also studying ways of increasing trigger rates during commissioning (dedicated TileCal cosmic trigger, min bias scint. planes in forward regions)

Dan Tovey

-180

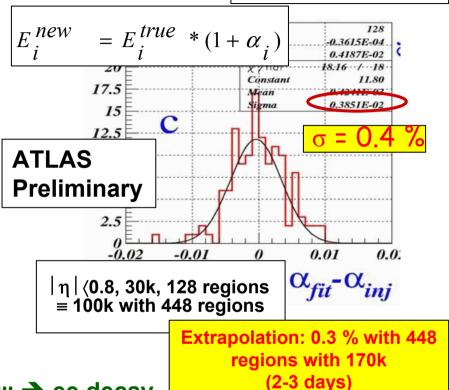
-90

Phase 5: First Collisions

- With first collisions will begin to understand / calibrate physics objects.
- Assume the detector is already ready for data taking
 - Calorimeters set to EM scale
 - Readout channels reasonably intercalibrated (electronics, cosmics, Cs etc)
 - Hadronic response set with weighting techniques in MC or from testbeam.
 - ID & muon system aligned roughly (initial survey, cosmics etc.)
- Aim to measure
 - energy scales,
 - Resolutions
 - Efficiencies
 - Fake rates etc.
- Requirements from physics e.g.:
 - 0.1% for the electron/muon energy/momentum scale
 - 1% for the jet energy scale
 - Also, uniformity
- Initially won't have this precision, e.g. 0.5% for muons from initial field maps and survey, 1-2% for EM from test-beam, 5-10% for JES from test-beam/MC.

Strategy

- Use isolated charged tracks (e.g. from τ decays) to
 - cross-check pre-collision alignment,
 - determine E/p matching precision,
 - determine hadronic energy scale,
 - Intercalibrate calorimeters
- Use J/ψ (low p_T) and Z^0 (high p_T) with mass constraint to
 - (Inter)calibrate LAr EM
 - Calibrate e/µ E/p scales
- Use W mass constraint in W→jj from ttbar production to set JES.
- Use Z^0/γ + jet events to calibrate across calorimeters (cracks, dead material) and monitor.
 - p_T balance between jet Z⁰/ γ
- Later use Z^0/γ + b-jet events to calibrate b-JES. Also measure b-tagging efficiency in situ with top events.



LArEM Intercalibration Work in progress

From hardware and beam tests: calibration known to 0.5-0.6 % inside 448 windows of $\Delta \eta \times \Delta \Phi = 0.2 \times 0.4$ inside $|\eta| \langle 2.5$

- Need 0.3% intercalib to achieve 0.7% • global constant term
- Use real data to intercalibrate (Z^0 , J/ψ , ۲ electron E/p, inclusive p_{T} distributions, photon conversions,...)
- $Z \rightarrow ee decay$ •
 - High rate (0.5-1 Hz), low background, easy trigger, uniform in η and φ , well known process, 2 correlated electromagnetic objects...
 - Define reference M_{ee} distributions and _ fit to invariant mass of e+e- in given pair of regions by tuning regional 'decalibration' coefficients α_i

$J/\psi \rightarrow ee decay$

- ~ 5*10⁵ J/ ψ in 1 year of low lumi (reconstruction eff=20%), trigger $pt(\mu) > 6 GeV$
- Gives check on linearity at low energy
- **Expected** intercalibration precision of 0.6%

EM/ μ Scales from Z⁰

0.11

0.108

0.106

0.104

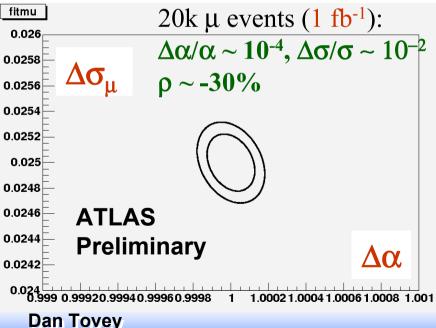
0.102

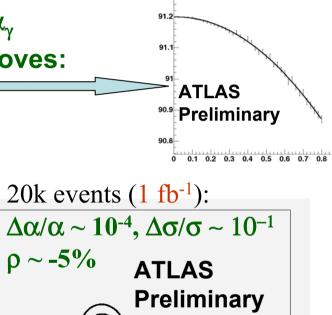
0.098

0.096

0.094

0.092


13


0.1

 $\Delta \sigma_{e}$

0.09 0.999 0.99920.99940.99960.9998

- Measure $e/\mu/\gamma$ energy scales using $Z \rightarrow ee(\gamma)/\mu\mu(\gamma)$.
- Create reference distributions for each channel
- Then minimize χ^2 comparing reference distributions and data varying the e, μ , γ E/p scales α_e , α_μ , α_γ
- Also consider <u>concurrently</u> as accuracy improves:
 - resolution effects (can shift peak)
 - PDFs (""")
 - FSR (" " ")

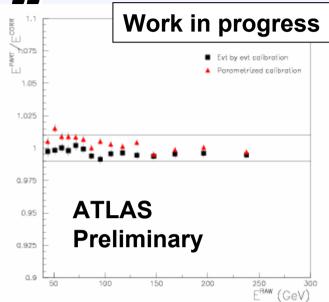
Work in progress

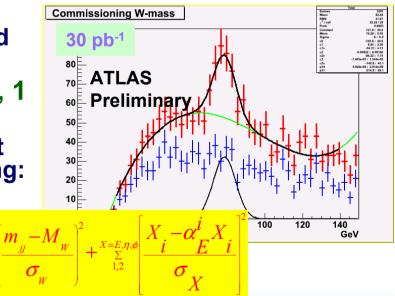
lass Shift vs. Resolution

1.0002 1.0004 1.0006 1.0008 1.001

1

Λα

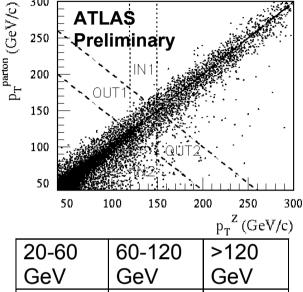

JES from W→jj



 Use the mass constraint of the W in ttbar events, to set the JES / rescale jet to parton energy α = E_{parton} / E_{jet}

$$M_{jj} = \sqrt{2E_{j1}E_{j2}(1-\cos\theta_{j1j2})} = M_W$$

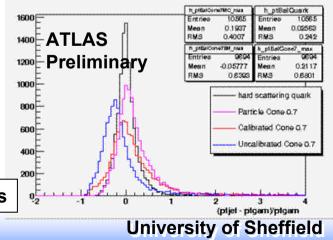
- Take into account E, η and ϕ in the minimization procedure and corrected energies and angles.
- E of parton and jet agree within ~ 1% over the range 50-250 GeV
- Pros: Good statistics, easily triggerable, small physics backgrounds.
- Cons: Only light q jets, limitations in E and η reach.
- More recently: investigating cases with 0, 1 or 2 b-tags.
 - Consider more sophisticated approach: fit to W mass dist rather than simple rescaling:
 - Takes into account variation of rescaling parameter with energy and correlation between energies and opening angle.



JES with γ/Z⁰+jet

- Use the p_T balance between Z or photon (precisely measured) and highest p_T jet
 - Reconstructed jet p_T rescaled to balance the Z p_T .
- Distribution systematically skewed, esp by ISR (and FSR)
- <u>Pros</u>:
 - Enlarged E and (especially) η reach wrt W**→**jj,
 - includes 6% of b-jets,
 - potentially large statistics available: γ+jet with p_T>20
 GeV: ~10K events/min. (not incl. eff. & trigger)
- <u>Cons</u>:
 - Easy to introduce biases in the selection procedure,
 - sensitivity to ISR modeling, esp at low p_T,
 - background to the γ or Z⁰ may bring additional bias
 - p_T range covered with good statistics limited.
 - The effect of the trigger has also to be considered (standard menu or downscaled)
- Also : dijet calibration, E_T^{miss} projection method
- Also use Z⁰ + b-jet to calibrate b-JES Work in progress

Dan Tovey

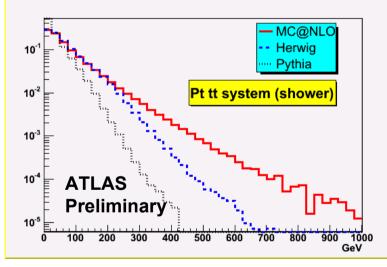


1% difficult below 60 GeV

0.004

0.015

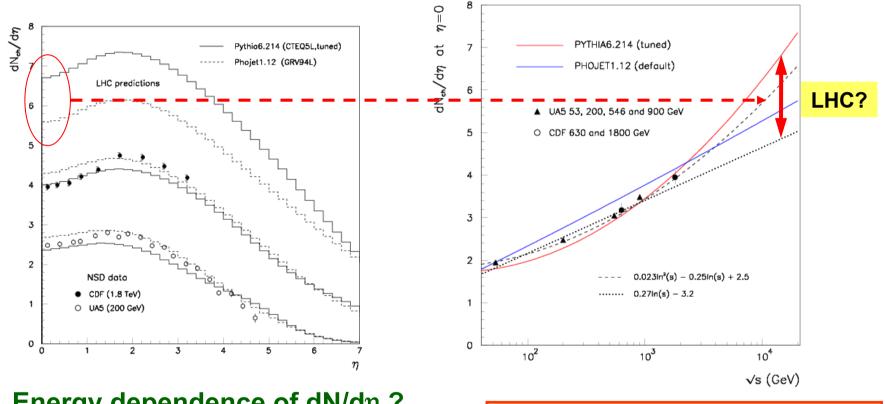
0.049



Phase 6: First Physics

- Vast topic in principle as many background estimation techniques as analyses
- In practice large degree of commonality, although different emphases.
- Need to
 - Minimise most poorly estimated backgrounds (at expense of statistics?);
 - Estimate remaining backgrounds from combination of data and MC;

Large differences between NLO/LO MC codes → Use even NLO codes with caution!

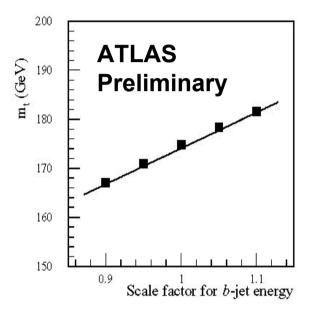

• We can learn a lot from Runll <u>but</u> one big difference:

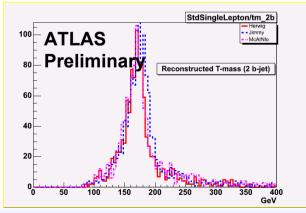
There will have been no previous measurements at similar $\sqrt{s!}$

• Will concentrate on three case studies: Min bias, Top and SUSY

- Energy dependence of dN/dη ?
- Vital for tuning UE model (see later)
- Only requires a few thousand events.

• PYTHIA models favour ln²(s);
• PHOJET suggests a ln(s) dependence.




- Assume low luminosity and/or detector pessimistic scenarios
 - Partly or non-working b-tagging at startup
 - Dead regions in the LArEM
 - Jet energy scale
- Initially uncertainty on b-jet energy scale expected to be dominant:

b-jet scale uncertainty	δ
1%	0.7 GeV
5%	3.5 GeV
10%	7 GeV

Cf: 10% on q-jet scale \rightarrow 3 GeV on M_{top}

Important to understand UE (see earlier)
 → can have a large effect (as large as 5 GeV on m_t)

University of Sheffield

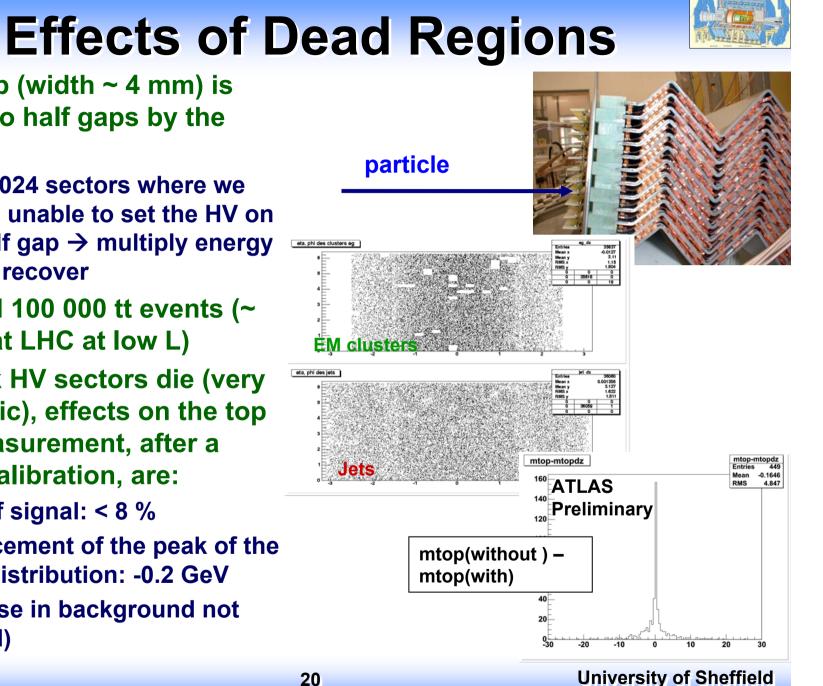
- **QCD** Multijet Background
- Not possible to realistically generate this background
 - Crucially depends on Atlas' capabilities to minimize mis-identification and increase e/π separation
- This background has to be obtained from data itself
 - E.g. method developed by CDF during run-1:

Use missing ET vs lepton isolation to define 4 regions:

A. Low lepton quality and small missing \mathbf{E}_{T}

Mostly non-W events (i.e. QCD background)

B. High lepton quality and small missing E_{T}

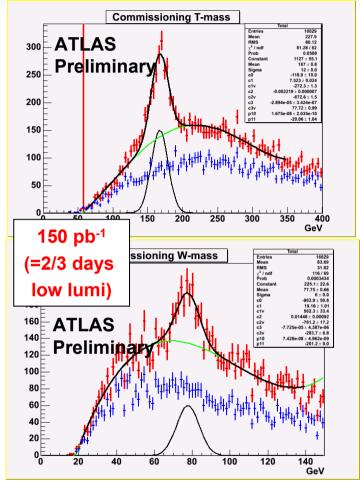

Observation of reduction in QCD background by isolation cut

C. Low lepton quality and high missing ${\rm E}_{\rm T}$

W enriched sample with a fraction of QCD background

- **D. High lepton quality and high missing E**_T W enriched sample
- The QCD reduction factor B/A can be applied to the "W enriched sample " (region C and D).
- The non-W candidate in D will therefore be (B/A)xC. Therefore, the fraction of non-W events in the region D will be:

(B.C)/(A.D)


- Argon gap (width \sim 4 mm) is split in two half gaps by the electrode
 - ~ 33 / 1024 sectors where we may be unable to set the HV on one half gap \rightarrow multiply energy by 2 to recover
- Simulated 100 000 tt events (~ 1.5 days at LHC at low L)
- If 33 weak HV sectors die (very pessimistic), effects on the top mass measurement, after a crude recalibration, are:
 - Loss of signal: < 8 %</p>
 - Displacement of the peak of the mass distribution: -0.2 GeV
 - (Increase in background not) studied)

Top Mass without B-tag

- Most important background for top: W+4 jets
 - Leptonic decay of W, with 4 extra 'light' jets
- Selection:
 - Isolated lepton with P_T>20 GeV
 - Exactly 4 jets ($\Delta R=0.4$) with P_T>40 GeV
- Reconstruction:
 - Select 3 jets with maximal resulting P_T
- Try to identify W peak (also useful for JES calibration)
- Select highest $p_T 2$ jet combination
 - W peak visible in signal
 - No peak in background
 - Better ideas possible?

		Prel	A5 iminary				
1	mean	σ(stat)		0 20 40 60 80 100 120 140 GeV			
	167.0	0.8	Health warning: Systematics not included / fast simulation used.				
	77.8	0.7	Cu	Currently under detailed study			

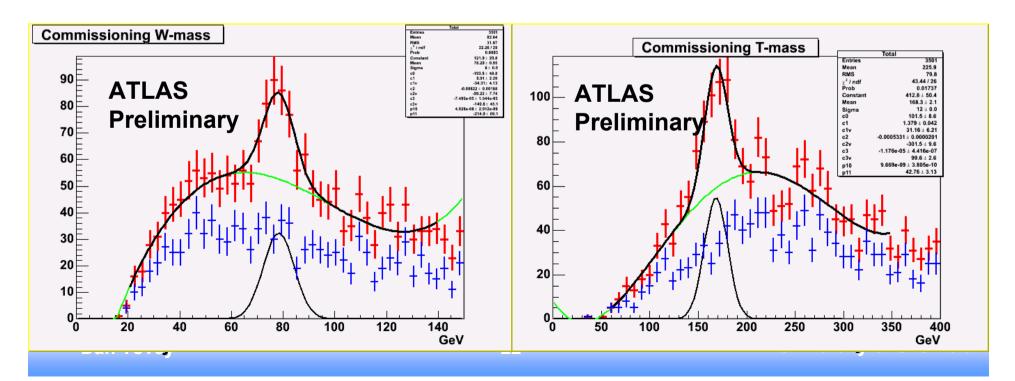
Dan Tovey

150 pb^{-*}

Mtop

Mw

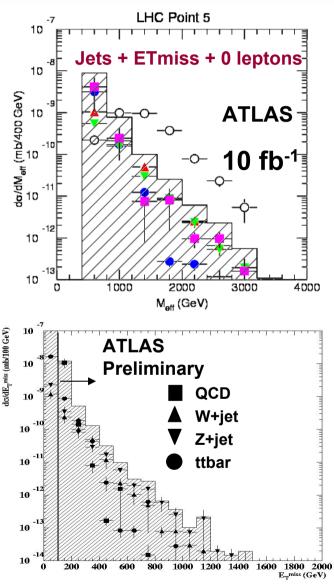
ATLAC


Lower luminosity?

- Go down to 30 pb⁻¹
 - Both W and t peaks already observable
 - See something!

Health warning: Systematics not included / fast simulation used. Currently under detailed study

		ATLAS Preliminary		
30 pb ⁻¹	mean	σ(stat)		
Мtop	170.0	3.2		
Mw	78.3	1.0		



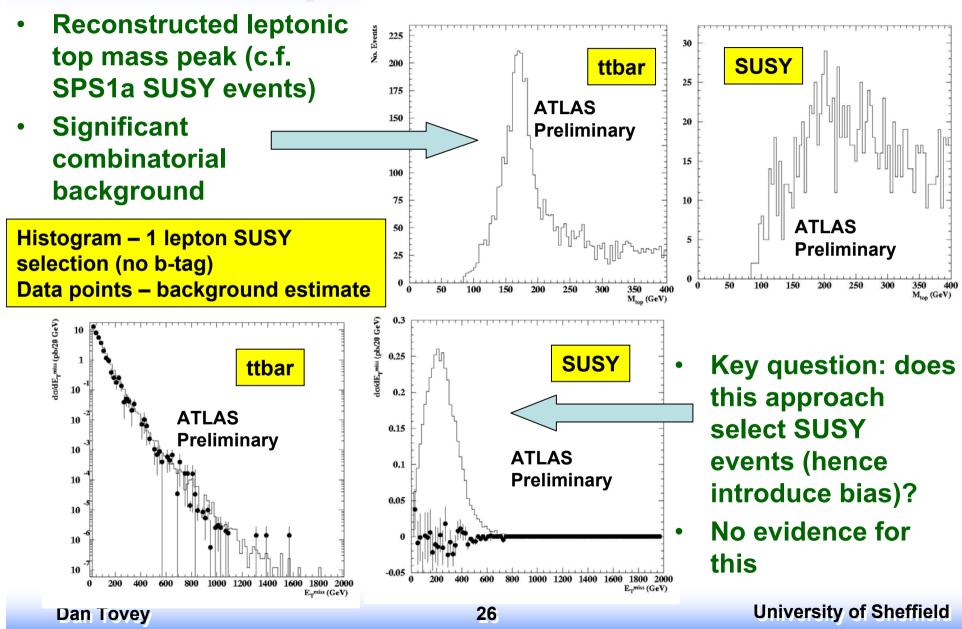
SUSY

- Inclusive signature: jets + n leptons + E_T^{miss}
- Main backgrounds:
 - Z + n jets
 - W + n jets
 - ttbar
 - QCD
- Greatest discrimination power from E_T^{miss} (R-Parity conserving models)
- Generic approach to background estimation:
 - Select low E_T^{miss} background calibration samples;
 - Extrapolate into high E_T^{miss} signal region.
- Extrapolation is non-trivial.
 - Must find variables uncorrelated with E_T^{miss}

University of Sheffield

- Aim to use techniques developed at CDF/D0 + some new ones
- W/Z + n jets
 - Z → vv + n jets, W → Iv + n jets, W → τv + (n-1) jets (τ fakes jet)
 - Estimate from $Z \rightarrow I^+I^- + n$ jets (e or μ)
 - Tag leptonic Z and use to validate MC / estimate E_T^{miss} from $p_T(Z) \& p_T(I)$
- QCD / fake E_T^{miss} (from gaps in acceptance, dead/hot cells, nongaussian tails etc.)
 - Much harder : simulations require detailed understanding of detector performance (not easy with little data).
 - Strategy (learn from Tevatron):
 - 1) Initially choose channels which minimise contribution until well understood
 - 2) Reject events where fake E_T^{miss} likely: beam-gas and machine background, bad primary vertex, hot cells, CR muons, E_T^{miss} vector pointing in (opposite) direction of (to) jets (jet fluctuations), jets pointing at regions of poor response, large Missing E_T Significance
 - 3) Choose hard cuts which minimise contribution to background.
 - 4) Estimate background using data and/or calibrated fast MC: need to estimate jet resolution functions using e.g. E_T^{miss} projection

Top Background


- Estimation using simulation possible (normalised to data ttbar selection) cross-check with data ?
- Standard (TDR) semileptonic top cuts look rather like SUSY cuts with looser E_T^{miss} requirement!

Process	_p ₁ ¹ > 20GeV ε ₁ ^{misa} > 20GeV	As before, plus N _{jet} ≥ 4	As before, plus N _{b-jet} ≥2	Events per 10 fb ⁻¹	
ft signal	64.7	21.2	5.0	126 000	Physics TD
W+ jets	47.9	0.1	0.002	1658	
Z+ jets	15.0	0.05	0.002	232	
ww	53.6	0.5	0.006	10	
WZ	53.8	0.5	0.02	8	
Z	2.8	0.04	0.008	14	
Total background				1922	
S/B				65	

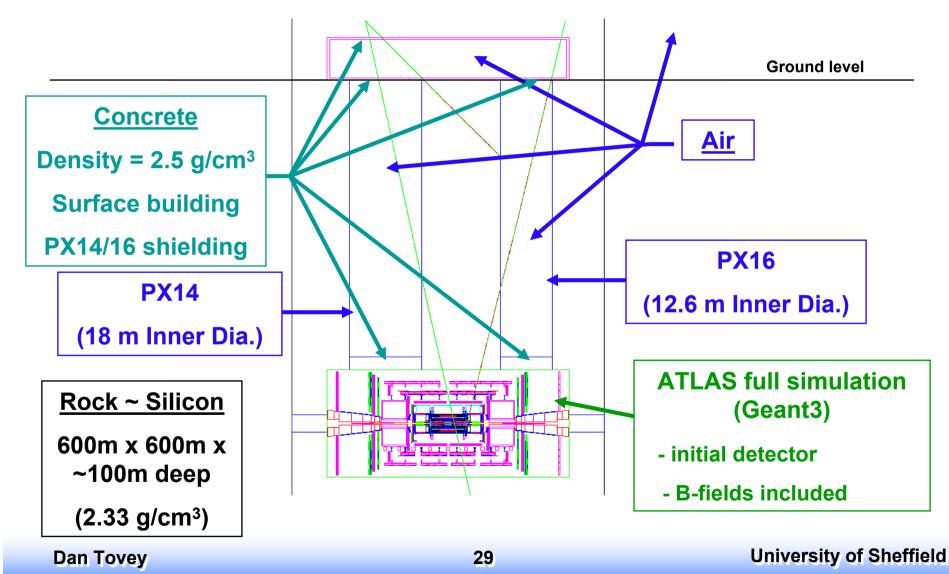
- If harden E_T^{miss} cuts top sample contaminated with SUSY signal (bias) ...
- Possible approach?
 - Select semi-leptonic candidates (standard cuts what btag available?);
 - Fully reconstruct top from E_T^{miss} & W mass constraint;
 - Reduce combinatorics with highest p_T W candidate
 - Reject (SUSY) background with mass cut & mtop sideband subtraction;
 - Use to validate top production in MC / estimate remaining E_T^{miss} background.

Top Reconstruction

Conclusions

- Lots of work currently being carried out preparing for first data.
- Detailed studies of calibration & alignment with cosmics and beam halo / beam-gas
- Preliminary studies of commissioning using collision data completed – more on-going.
- Physics Working Groups studying techniques needed to estimate/reduce backgrounds to specific channels
 also requires development of new tools.
- ATLAS will be ready to make optimum use of first physics data when it arrives.

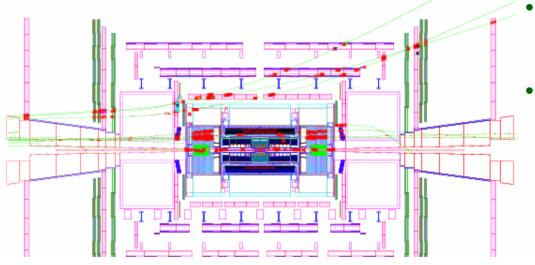
Backup Slides


University of Sheffield

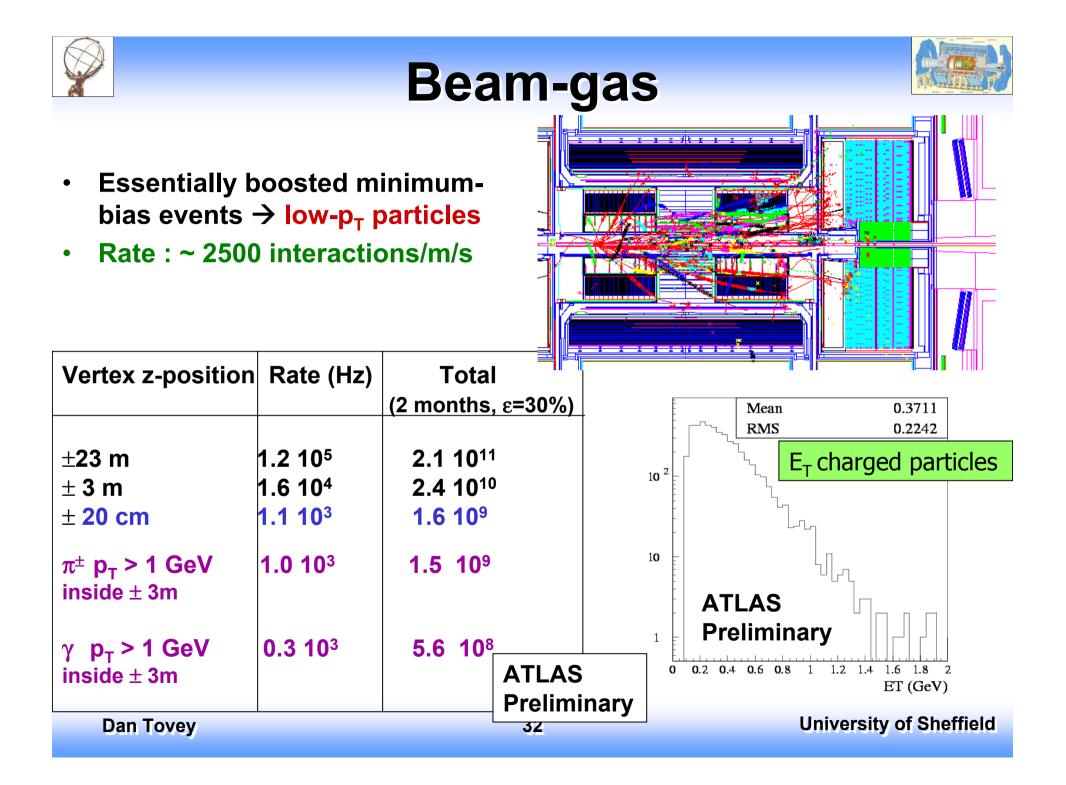
Phase 3: Cosmic μ

• Full simulation of cosmic ray muons in ATLAS developed (G3)

Expected Cosmics Rates


	Condition	Rate	(Hz)
ATLAS Preliminary		E _{surface} > 10 GeV ("PDG" approximation)	E _{surface} >10 GeV ("ALE" generator)
ATLAS UX15		5900	4900
Any G3 digit		2800	2300
Through	RPC _{Y>0} x RPC _{Y<0} x ID _{DIGI}	28	24
going	RPC _{Y>0} x RPC _{Y<0} x PIX _{DIGI}	0.6	0.4
Pass by	Z _{DIGI} < 300, R _{DIGI} < 60 cm	12.2	10.2
≈ origin	Z _{DIGI} < 100, R _{DIGI} < 30 cm	2.3	1.9
	Z _{DIGI} < 60, R _{DIGI} < 20cm	0.6	0.5
	E _T ^{CELL} > 5 GeV	0.1	0.1
EM Cal	E _T ^{CLUSTER} > 5 GeV	0.2	0.2
	E _T ^{TOTAL} > 5 GeV	0.4	0.4
Tile Cal	E _{TOTAL} > 20 GeV	1.4	1.2
HEC	E _{TOTAL} > 20 GeV	0.1	0.1
FCAL	E _{TOTAL} > 20 GeV	0.02	0.02
Dan Tovey	30		University of Sheffield

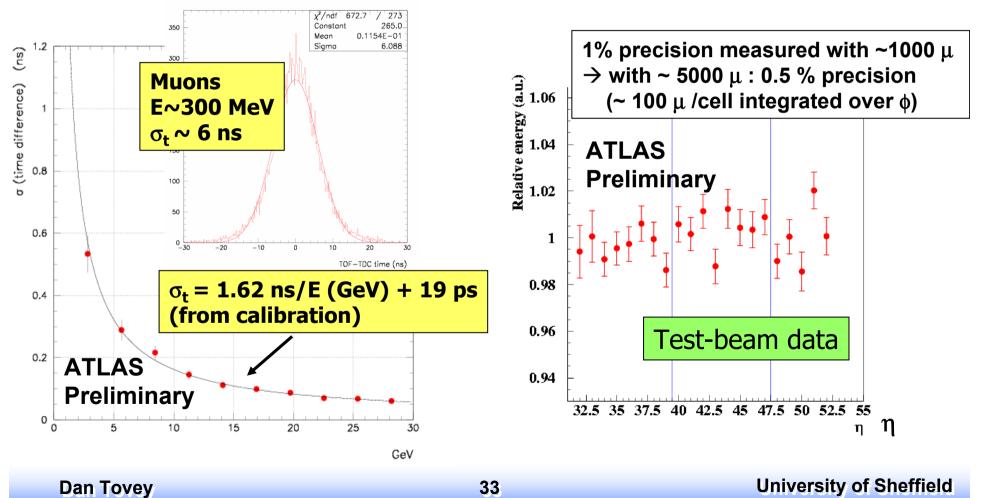
Beam halo



- Rates for initial period scaled from highluminosity rates by assuming
- 3 x 10¹⁰ p per bunch and 43 bunches → ~ 200 times lower current (but assuming same vacuum, etc.)
- Total rates assume two months single-beam w/ 30% data taking eff.

Detector	Rate (B-field off)	Total (B-field off)	Rate (B-field on)	Total (B-field on)
MDT barrel	15 Hz	2.5 10 ⁷	72 Hz	1.5 10 ⁸
MDT end-cap	145 Hz	2.5 10 ⁸	135 Hz	2.5 10 ⁸
Pixel/SCT	1.8/17 Hz	3 10 ^{6 /} 3 10 ⁷	2/19 Hz	3 10 ^{6 /} 3 10 ⁷
EM E > 5 GeV	2 Hz	3.5 10 ⁶	1 Hz	1.7 10 ⁶
Tile/HEC E > 20 GeV	1.7/1.2 Hz	2.9/2.1 10 ⁶	1.6/0.9 Hz LAS Prelin	2.8/1.6 10 ⁶

- Simple definition of "useful tracks": 2-3 segments in MDT+ 3-4 disks in ID end-cap
- More recently: results from simulation of machine conditions in the commissioning period (including more realistic vacuum estimates, etc.) give rates ~ 7 lower



Cosmics in ECAL

- With ~ 100 muons/cell in middle compartment:
- check calorimeter timing to < 1 ns
- check calorimeter position in η / ϕ wrt other sub-detectors to < 1 mm
- check response uniformity vs η : \approx 0.5% precision could be achieved

Cosmics in µ System

- Cosmic rate high enough for polar angles up to θ =75°: ~1Hz/strad for muons going through the ID (almost projective) and p_{μ} >10 GeV
 - Study of all barrel sectors (probably except sectors 1-9 with vertical chambers) and part of the forward chambers
- First test of the full reconstruction (field off/reduced/full field)
- Map dead channels, chase/replace faulty FE cards
- Tube efficiency, R-t relation (autocalibration):
 - 1000 (no field)-10000 (with field) $\mu/tube \ \Rightarrow$ ~10-100 days
- Check/calibration of the (barrel only?) alignment system with straight tracks (<30µm level): 2000µ/chamber ~10 hours
- Alignment μ barrel/ μ End cap, μ spectro/ID

B-Tagging Efficiency

- ϵ_{tag} = probability to tag at least one jet in a top event
 - $-\varepsilon_{tag} = \varepsilon_{b-tag} + \varepsilon_{non-b} (\varepsilon_{b-tag} \cdot \varepsilon_{non-b})$
 - $\quad \varepsilon_{\text{non-b}} = \varepsilon_{\text{c-tag}} + \varepsilon_{\text{nonhf}}$
- ε_{b-taq} is the sum of these possibilities:
 - Probability to tag 1 b-jet in the event, when 1 is found in the detector
 - Probability to tag 1 b-jet when 1 is found in the detector
 - Probability to tag 2 b-jets when 2 are found in the detector
- First simple evaluation (counting method):
 - Select a very pure ttbar sample with tight kinematical cuts
 - Count the number of events with <u>at least</u> 1 tagged b-jet
 - Divide this number by the number of pre-tag candidate events
- ϵ 's are measured in MC. Account for difference in tagging between MC and data with Scale Factor:

$$\varepsilon_{b-tag}^{event} = F_{1b} \cdot \varepsilon_{btag} \cdot SF + F_{2b} \cdot \varepsilon_{btag}^2 \cdot SF^2 + 2 \cdot F_{2b} \cdot \varepsilon_{btag} \cdot SF \cdot (1 - \varepsilon_{btag})$$

Probability to tag oneProbability to tag twoPB-jet when one is foundB-jets when two are foundB

Probability to tag one B-jet when two are found

- F_{1b} = fraction of events with 1 taggable jets
- F_{2b} = fraction of events with 2 taggable jets