Recommendations for Limits

CDF Statistics Committee

Introduction
Bayes
Bayes'
Conclusions

Louis Lyons
Joel Heinrich
Luc Demortier

Introduction

Different Methods for Limits
Different Methods for Systematics
Pro's and Con's of Methods
Reading List

Scenario

n = Poisson(m)
$$\Rightarrow \frac{e^{-m}m^n}{n!}$$

m = s e + b

s = signal strength
e = efficiency * L 3 0
b = background

Simplest version: e, b precisely known More realistic

e, b estimated Multichannel

e_i, b_i correlated Kinematic variables Theory Uncertainties

Philosophy

Important

Non-trivial: CERN, FNAL CLW's

Several wrong, but no unique correct method

Part of larger picture

2-sided limits (rate estimation)

p-values for discovery

Computable


Applicable to more than 1 channel counting

Wrong Question? 2-sided limits

Unphysical values

Extent of exclusion

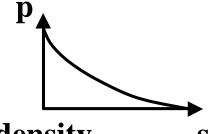
Methods for Limits

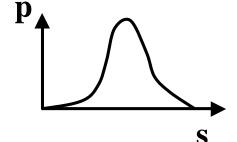
Methods for Systematics

- 1. Shift P ±S_{syst}
- 2. L: Marginalise or Profile (widen)
- 3. Bayes
- 4. Frequentist
- 5. Cousins-Highland
- N.B. e_i , b_i can have correlated uncertainties. s_b not as serious as s_e

Desirable Features

Computable in practice **Coverage** (no undercoverage not too much overcoverage no very large intervals) No empty or very short intervals Discriminate against incorrect values 1 sided « 2 sided « signal discovery Adaptable to N_c channels **Incorporate (correlated) systematics** Consistent philosophy for all parameters? Only physical values of parameters


Feature of Bayes


Easy to understand

"Easy" to compute

"Easy" to incorporate systematics

Limits are physical 2-sided « 1-sided

Not max posterior prob density Box method

Priors (especially multidimensional) Robustness, Divergent posterior*

Coverage: Average coverage theorem

Bayes Priors

```
Physicists favourite choice s: constant
```

improper unbelievable

e: Gaussian (truncated at zero)

PROBLEM Divergent Posterior

 $(e \otimes 0, s \otimes Y)$

Possible solutions

Truncate s (100pb « 100mb?)

See Luc's plot

Truncate Gaussian harder

Replace Gaussian by G, b, ln-normal

See Joel's talk *

p(s,e) 1 p(s) p(e)

See Luc's talk *

Features of Frequentism

No Prior

Clifford, Luc Coverage

"Necessary" but not sufficient

Harder to understand/interpret Hard to compute in several parameters **Systematics Ordering rule**

90% n 90%

Over-coverage in several dimensions from projection

Empty intervals

Features of Feldman-Cousins

Frequentist D Coverage
Unified D No Flip-flop
Fewer zero-length intervals
Resolves arbitrariness of ordering rule

Computation in several paramters
Systematics
Pathologies
Decreasing limit for "unphysical result"
Standard frequentist is worse
Fast exclusion of s = 0?

Features of CL_S

Hypothesis exclusion method

Coverage

Overcoverage "Conservative freq."

No false sensitivity claims LEP H; D0; Tevatron H sensitivity

CL itivity **Bgd**

X_{obs}

Understanding Systematics

Needs Bayes

Only upper limits from CL_S

Sig+Bgd

Features of Cousins-Highland

Nim A320 (1992) 331

Computable Widely used

Mixed philosophy
Coverage not guaranteed
Approximate formulae not always accurate

Reading Material

CERN & FNAL CLW's	§
CL _S : Alex Read, J Phys G <u>28</u> 2693 (Durham Statistics Conf 2002)	§
Setting limits CDF Stat. Comm. Web page	§
Bob Cousins "Why Isn't" Am J Phys <u>63</u> (1995) 398	
D0 Limit Recommendations D0 Note 4629	
BaBar Stat. Working Group	
http://www.slac.stanford.edu/BFROOT/www/statistics	§
CDF notes	
Joel Heinrich "Coverage Poisson" CDF 6438	§
Manhattan Project	
Bayes CDF 7117 J.H.	§
Bayes' CDF 5928 L.D.	§
Cousins-Highland (soon) C.B.	
Frequentist (soonish) G.P.	
Profile L: W. Rolke et al., physics/0403059	§
Cousins-Highland: Tegenfeldt & Conrad physics/0408039	
§ Available via CDF Statistics Committee Web page	