Lepton Flavor Violation Status and Prospects

T. Mori The University of Tokyo

Charged Lepton Flavor Violation Experimental Status and Prospects

T. Mori The University of Tokyo

Topics to Cover

• Why Charged Lepton Flavor Violation?

• "Tau Processes" :

✓ Muon to Tau Conversion

✓ Tau Decays at B Factories

• "Non-Tau Processes" :

✓ Muon to Electron Conversion

✓ Muon Decay to Electron and Gamma

Topics to Cover

- Why Charged Lepton Flavor Violation?
- WG3

A.Baldini

- "Tau Processes" :
- ✓ Muon to Tau Conversion Y.Kuno, G.Marchio
 ✓ Tau Decays at B Factories S.Banerjee
 "Non-Tau Processes":
 ✓ Muon to Electron Conversion Y.Kuno
 - ✓ Muon Decay to Electron and Gamma

Why Charged Lepton Flavor Violation?

Quark FV is generally contaminated by SM.
Look for tiny deviations from SM
Charged LFV Is Beyond SM.
Some already reach the sensitivity.
Just Find It !

"Tau Processes"

Mu - Tau Conversion with High Intensity Muon Beam

Λ

• "Bottom Up" Approach:

✓ Effective 4-Fermi interaction experimentally constrained

✓ Some couplings only loosely constrained by tau decays (scalar by τ→μππ) Sher, Turan

✓ Not constrained by tau decays
 if (qq) = (uc), etc.
 Gninenko et al

Less constrained coupling as large as 0.5fb at 50GeV could yield signal events for ~10¹⁵ muons/year on ~100g/cm² target

Experimental Feasibility at SPS or Neutrino Factory? G. Marchio

Deep Inelastic Conversion

- In SUSY models, possible enhancement due to Higgs mediation
 Constrained by T→μη, 3μ
 -100ρ events for 10²⁰ muons at 50GeV; more for higher E
- For above 60GeV, b-quark subprocess dominates and increases the cross-section
- Gauge-boson mediation strongly constrained by τ→μγ

Monte Carlo Simulation

• 500GeV muon beam Generator: Signal Modified LQGENEP (leptoquark generator) Bellagamba et al Background LEPTO γDIS Q^2>1.69GeV^2,σ=0.17μb MC truth level analysis

Work in progress

Shinya KANEMURA

Kanemura, Kuno, Kuze, Ota, Takai

7

Hadrons from $\mu N \rightarrow \tau X$ and backgrounds

Scattering angle of µ is small, it would be difficult to tag background events for reduction

Y. Kuno

LFV Tau Decays at B Factories

Detectors at B-factories

Asymmetric-energy collider at $\sqrt{s} = 10.58 \text{ GeV} = \Upsilon(4S)$ $\sigma(\tau\tau) \sim 0.9 \text{ nb}, \sigma(B\bar{B}) \sim 1.1 \text{ nb} \Rightarrow \text{B-factory is also } \tau \text{ factory}!!!$

Y.Miyazaki @EPS

Analysis method for LFV τ decay

 \Rightarrow Will show results for $au \rightarrow \ell K^0_S, \ell \gamma, \mu \eta, \ell h h'$ modes

0.2

-0.4

(GeV)

 $\Delta \mathbf{E}$ -0.2 $\tau \rightarrow \mu \eta, \eta \rightarrow \gamma \gamma$

eff = 8.0%

1.6 1.7 1.8 1.9 $M_{\mu\eta}$ (GeV/c²) $\tau \rightarrow \mu \eta, \eta \rightarrow \pi \pi \pi^0$ 0.2 eff = 7.2%(GeV) ∃ ⊲_-0.2 -0.4 1.75 1.85 1.65 1.7 1.8 $M_{\mu\eta}$ (GeV/c²)

 $\mathcal{B}(\tau \rightarrow \mu \eta) < 1.5 \times 10^{-7}$ (90%C.L.) (154/fb@Belle) $(\mathcal{B}(\tau \rightarrow \ell \eta, \ell \eta' \ell \pi^0) < (1.5 - 10) \times 10^{-7})$ (hep-ex/0503041 accepted by PLB)

(CLEO: $\mathcal{B}(au o \mu\eta) < 9.6 imes 10^{-6}$) \Rightarrow Improved by a factor of 64 compared with CLEO

Upper limit : (Eff=11.2%@ $\pm 5\sigma$ box) $\mathcal{B}(\tau \rightarrow \mu \gamma) < 3.1 \times 10^{-7}$ (90%C.L.) Phys. Rev. Lett. 92, 171802 (2004) \rightarrow Analysis in progress using full data sample Upper limit : (Eff=7.42%@ 2 σ ellipse) ($\mathcal{B}(\tau \rightarrow \mu \gamma) < 6.8 \times 10^{-8}$ (90%C.L.) (hep-ex/0502032 submitted to PRL)

Tau LFV limits are approaching 10⁻⁸ at B factories

... but already suffering background

Constraints on theoretical models from LFV τ decay

Constrain SUSY parameters from LFV au decay

 $(\tan \beta$: the ratio of the vacuum expectation values of the two Higgs doublets, m_{susy} : SUSY mass scale, m_A : the pseudo-scalar Higgs mass)

Constraining MSSM for Higgs mediation and large tanß

"Non-Tau Processes"

Muon to Electron

 Most Sensitive to SUSY GUT and SUSY Seesaw Models

 $\checkmark \tau \rightarrow \mu \gamma < 10^{-9}$ for SUSY SO(10)

• Predicted Branching Ratios are Within the Reach of the Next Experiments !

Clear 2-body kinematics

Good detector system Is essential Use μ^{\star} to avoid capture inside stopping target

Background dominated by Accidental coincidence

- \rightarrow lower μ rate is better
- \rightarrow DC μ beam is best

"surface muon beam": 100% polarized

$\mu \rightarrow e$ conversion

 μ^{-} to make a muonic atom

a single electron with E_e = M_{\mu} - δ

Background:

- Decay in orbit $\sim (E_{max} E_e)^5$
- Beam related → next page

Prompt Beam Induced Background

SINDRUM II @PSI

in coincidence with 20nsec Cyclotron RF ~ pion decay in flight

@ PSI

Final result on mu - e conversion on Gold target is being prepared for publication

< 7 x 10⁻¹³ 90%CL

MECO Experiment @BNL

Beam-related background

e.g. radiative pion capture

Proton beam

Proposed Muon Facility at J-PARC

PRISM/PRIME for $\mu^- N \rightarrow e^- N$

A high-quality beam is essential to carry out $\mu^- N \rightarrow e^- N$ at high sensitivity.

PRISM

- (=Phase Rotated Intense Slow Muon source)
- High muon intensity
 - 10¹¹ 10¹² µ⁻/sec
- Low energy 68 MeV/c
- Pulsed beam
 - Rejection of background coming from proton
- Narrow energy spread (by phase rotation)
 - $\Delta E/E = \pm 0.5 \sim 1.0 \text{ MeV}$
 - thinner muon-stopping target
 - Better e⁻ momentum/energy resolution while keeping high muon stopping efficiency
- Less beam contamination
 - Practically no pion contamination π/μ ~ 10⁻¹⁸

- Year 2003-2007
 - PRISM-FFAG (phase rotator) is under construction
- Phase-I : construction and test of PRISM
- Phase-II : installation of PRISM to high intensity proton machine for mu-e. search.

Y. Kuno

• GOAL: $B(\mu^- N \to e^- N) < 10^{-18}$

Construction of PRISM-FFAG Phase-Rotator

2003 - 2007 The PRISM FFAG magnets are under construction. The RF system has been completed and tested.

FFAG D coils

FFAG F coils

The MEG Experiment

The $\mu \rightarrow e\gamma$ experiment at PSI

The MEG experiment

Approved at Paul Scherrer Institut, Switzerland in 1999

Start physics run in 2006

Initial aim at 10⁻¹³ eventually down to 10⁻¹⁴

3 Techniques that enabled the experiment

LXe scintillation γ -ray detector

COBRA magnet w/ graded B field

Most intensive DC muon beam (10⁸/sec)

590MeV, >1.8mA

$\pi E5 area @PSI$

Presently tuning the beam down to the target position

10⁸ muon stops /sec ~10mm spot size

specially graded B field

low B field at LXe detector

The COBRA Spectrometer

compensation coils

LXe detector prototype

COBRA magnet

Drift Chambers for Positrons

very low material to avoid multiple scattering and positron annihilation in flight

special vernier pads for z measurement

mom resolution 0.7-0.9%

angle 9-12mrad

vertex 2.1-2.5mm

FWHM

/ Timing Counter

• Two layers of scintillators:

Outer layer, read out by PMTs: timing measurement Inner layer, read out with APDs at 90°: z-trigger

• Obtained goal σ_{time ~40 psec (100 ps FWHM)

Exp. application ^(*)	Counter size (cm) (T x W x L)	Scintillator	РМТ	λ _{att} (cm)	σ _t (meas)	σ _t (exp)
G.D.Agostini	3x 15 x 100	NE114	XP2020	200	120	60
T. Tanimori	3 x 20 x 150	SCSN38	R1332	180	140	110
T. Sugitate	4 x 3.5 x 100	SCSN23	R1828	200	50	53
R.T. Gile	5 x 10 x 280	BC408	XP2020	270	110	137
TOPAZ	4.2 x 13 x 400	BC412	R1828	300	210	240
R. Stroynowski	2 x 3 x 300	SCSN38	XP2020	180	180	420
Belle	4 x 6 x 255	BC408	R6680	250	90	143
MEG	4 x 4 x 90	BC404	R5924	270	38	

Best existing TC

LXe Gamma Ray Detector

LXe Scintillation: High Light Yield, Fast Signal Measures Energy, Time and Position of Gamma Rays 3 ton LXe with ~850 PMTs waveform digitizing to reject pile-up

low temperature 165K, VUV light

A Simulated Event

Prototype Detector

Calibration of LXe Detector

- alpha Sources (on wires and wall)
- Proton accelerator ${}^{7}\text{Li}(p, \gamma_{17.6}){}^{8}\text{Be}$ design under way
- Neutron generator ${}^{58}\text{Ni}(n,\gamma_9){}^{59}\text{Ni}$
- Charge exchange reaction (Panofsky) $\pi^- p \rightarrow \pi^0 n$

MEG Prospects

- Detectors are presently under construction and will be ready next year (2006).
 - Data taking takes ~2 years with muon beam of (1-2) x 10⁷ /sec to reach ~1 x 10⁻¹³ sensitivity (90% CL).
 - A pre-LHC era Experiment !
- Eventual reach to I x 10⁻¹⁴ with 10⁸ /sec in the LHC era ?
 A. Baldini

Conclusion

- Charged LFV experiments are now as highly expected as ever!
- The B Factories are rapidly improving the tau LFV limits though seeing background events.
- The MEG experiment will become ready next year and may obtain a significant result (discovery!) before entering the LHC era.
- New experiments are waiting to join them!