Lepton Flavour Violation in τ **decays: Status and Perspectives ...**

Flavour in the era of the LHC, Workshop at CERN ($7^{\rm th}-10^{\rm th}$ Nov 2005)

Introduction

- Lepton flavor violation (LFV)
 - not forbidden by SM gauge symmetry
 - most new models explicitly include LFV vertex
- In SM, LF is conserved for zero degenerate ν masses
 - SM extended to include finite ν mass and mixing predicts LFV

... many orders below experimental sensitivity!

Observation for LFV \Rightarrow

unambiguous signature of new physics

- Mass dependent couplings enhance tau LFV w.r.t. lighter leptons
- Some models predict LFV upto existing experimental bounds
- Neutrinoless 2 and 3 body τ decays have different sensitivity

	$\mathcal{B}(au o \ell \gamma)$	$\mathcal{B}(au ightarrow \ell \ell \ell)$
mSUGRA+seesaw (EPJC14(2000)319, PRD66(2002)115013)	10^{-7}	10^{-9}
SUSY SO(10) (NPB649(2003)189, PRD68(2003)033012)	10^{-8}	10^{-10}
SUSY Higgs (PLB549(2002)159, PLB566(2003)217)	10^{-10}	10^{-7}
Non-Universal Z' (PLB547(2002)252)	10^{-9}	10^{-8}
SM+Heavy Majorana $ u_{ m R}$ (PRD66(2002)034008)	10^{-9}	10^{-10}
Illustrative scenarios τ^{-} $\tilde{\chi}$ χ^{-}		μ^- μ^- μ^+
Personia a		

Search for LFV $\tau \to \ell \gamma$, $\tau \to \ell \ell \ell$, $\tau \to \ell h h'$ decays $(\ell = e, \mu; h = \pi, K)$

Divide τ -pair event \perp to thrust axis (CM frame) in 2 hemispheres

 $\rightarrow \mu \gamma$

• (Energy, Mass)_{daughters} $\sim (\frac{\sqrt{s}}{2}, m_{\tau})$ (upto resolution & radiation)

 $ightarrow \mu\gamma$

• (Energy, Mass)_{daughters} $\sim (\frac{\sqrt{s}}{2}, m_{\tau})$ (upto resolution & radiation)

Background estimation

Upper Limit

$B_{\rm UL}^{90} = N_{\rm UL}^{90} / (N_\tau \times \varepsilon)$

- $N_{\rm UL}^{90}$: 90% C.L. Upper Limit for ($N_{\rm obs}$, $N_{\rm bkg}$) from Data
- \bullet <u> ε </u>: high statistics signal MC simulated for different Data-taking periods

$\epsilon = \text{Trigger}$. Reco . Topology . PID . Cuts . Signal–Box						
	90%	70%	70%	50%	50%	50%
Cumu	lative:					
	90%	63%	44%	22%	11%	~5%

- 𝒴 σ_{τ+τ}− (10.6 GeV) ~ 0.89 nb
- **•** $L \sim 250 \text{ fb}^{-1}$ (BaBar Summer 2005)
- $\Rightarrow N_{\tau} \sim 4.5 \times 10^8$

B-Factories: Status

Channel	BaBar		Belle	
	$B_{\rm UL}^{90} \ (10^{-7})$	$\mathcal{L} (fb^{-1})$	$B_{\rm UL}^{90}~(10^{-7})$	$\mathcal{L} (fb^{-1})$
$ au o \mu \gamma$	0.7	232.2	3.1	86.3
	PRL95(2005)41802		PRL92(2004)171802	
$ au o e\gamma$	1.1	232.2	3.9	86.7
	hep-ex/0508012 (sub PRL)		PLB613(2005)20	
$ au o \mu \mu \mu$	1.9	91.5	2.0	87.1
	PRL92(2004	4)121801	PLB589(2004)103	
$\tau \rightarrow eee$	2.0	91.5	3.5	87.1
	PRL92(2004	4)121801	PLB589(20	04)103
$ au o \ell \ell \ell$	(1-3)	91.5	(2-4)	87.1
	PRL92(2004)121801		PLB589(2004)103	
$ au ightarrow \ell h h'$	(1-5)	221.4	(2-16)	158.0
	PRL95(2005)191801		NPB(Proc)144(2005)173	
$ au ightarrow \ell \pi^0 / \eta / \eta'$			(2-10)	153.8
			PLB622(20	005)218
$\tau \to \ell K^0_S$			(0.5-0.6)	281
			hep-ex/05	09014

B-Factories: Projections

$B_{\rm UL}^{90} = N_{\rm UL}^{90} / (N_\tau \times \varepsilon)$

● $\tau \rightarrow \mu \gamma$ search: Optimize: $N_{\rm UL}^{90} / ε$

• Sensitivity: $B_{\rm UL}^{90} \sim 1.2 \times 10^{-7}$ (BaBar, 232.2 fb⁻¹)

	No Background	With Background
$N_{ m UL}^{90}$	$2.3 imes\sqrt{N_{ m obs}}\sim \mathcal{O}(1)$	$\sqrt{\mathcal{L}}$
$B_{ m UL}^{90}$	$\propto 1/{\cal L}$	$\propto 1/\sqrt{\mathcal{L}}$

• BaBar, Belle: 1 ab^{-1} each (2008)

L	(ab^{-1})	0.25 (Now)	1.0	50
$B_{ m UL}^{90}$	(10^{-8})	10	2.5 (5)	0.05 (0.7)

Super B-Factory:

• 50 $ab^{-1} \Rightarrow B_{\text{UL}}^{90} < \mathcal{O} (10^{-10}) / \mathcal{O} (10^{-9})$ no/with Background

$\tau \rightarrow \mu \gamma$: LHC expectations

L. Serin and R. Stroynowski (ATL-PHYS-97-114):

• $\varepsilon = 5.4\%$, $N_{bkg} = 17$ events/yr (10 fb⁻¹)

- Sensitivity $\mathcal{B}(\tau \to \mu \gamma) = (2.3 \times \sqrt{N_{bkg}}) / (N_{\tau} \times \varepsilon) \sim 10^{-6}$
- For 30 fb⁻¹ data : $\mathcal{B}(\tau \rightarrow \mu \gamma) < 0.6 \times 10^{-6}$
- **E.** Barberio (SMU, 2002):

S. Banerjee

University of Victoria • Signal: $Z \to \tau \tau$ decays $\Rightarrow N_{\tau} = 2 \times \mathcal{L} \times \sigma \times \mathcal{B}$

$\tau \rightarrow \mu \mu \mu$: LHC expectations

Event Signature:

- 3 prong vertex
- μ ID
- m($\mu\mu\mu$) ~ m $_{ au}$

$N_{ au}$ / yr (low lumi)			
W o au u	$1.5 imes 10^8$		
$Z \to \tau \tau$	$8.0 imes 10^8$		
$D_S \to \tau X$	$1.5 imes 10^{12}$		
$B^0 \to \tau X$	$4.0 imes 10^{11}$		
$B^{\pm} \to \tau X$	$3.8 imes10^{11}$		
$B_S \to \tau X$	$7.9 imes10^{10}$		

CMS Simulation

$\tau \rightarrow \mu \mu \mu$: LHC expectations

D Level 1 Trigger: single-muon $p_T > 14$ GeV, di-muon $p_T > 3$ GeV

Backgrounds: $D_S \rightarrow \mu \nu \phi$

 $\phi
ightarrow \mu \mu$, $\phi
ightarrow \mu \mu \gamma$

■ $\varepsilon \sim 1\%$ (?), $\mathcal{B}(\tau \to \mu \mu \mu) < 10^{-10}$ (A.Stahl, Heraeus School 2005)

B-Factories Reach (O.Igonkina, SUSY05)

- Model-independent calculation
 (A.Brignole, A.Rossi, NPB701(2004)3)
- RGE using SPheno(W. Porod, CPC153(2003)275)
- Cold Dark Matter (WMAP) with micrOMEGAs (CPC149(2002)103)

• mSUGRA + Seesaw: $\mathcal{L} = Y_{\nu}L\tilde{H}_2N_R$, $Y_{\nu} \propto V_{MNS}$ mixing by RGE

 $\tau \rightarrow \mu \gamma \& \mathbf{S}_{\phi \mathrm{K}_{\mathrm{S}}}$

• SUSY SU(5) GUT: Flavour changing right-handed currents \Rightarrow Correlations between CP asymmetry in b-s penguins and $\tau \rightarrow \mu \gamma$

Current measurement: $S(B \to \phi \bar{K}_S) = 0.47 \pm 0.19$ (HFAG, 2005). More sensitive $\mathcal{B}(\tau \to \mu \gamma) < 6.8 \times 10^{-8}$ exclude some regions.

SUSY + Higgs

(A.Brignole, A.Rossi, PLB566(2003)217)

- $\mathcal{B}(\tau \to 3\mu) \simeq 10^{-7} \times (\frac{\tan\beta}{50})^6 \times (\frac{100GeV}{m_A})^4 \times (\frac{|50\Delta_L|^2 + |50\Delta_R|^2}{10^{-3}})$
- If Higgs light, s-particles $\sim \mathcal{O}(\text{TeV})$, $\tan \beta \sim 50$
 - No direct observation, but $\tau \rightarrow \mu \mu \mu$ observable (?)
 - Sensitivity $\sim 10^{-8} 10^{-10}$ at B-Factories, LHC

Non Universal Z' (Technicolor) (C.Yue, Y.Zhang, L.Liu, PLB547(2002)252)

- $\tau \rightarrow \ell \ell \ell \mod \tau$ most sensitive
- Flavour mixing $(k_1) = 0.2$, $\mathcal{B}(\tau \rightarrow \ell \ell \ell) < 10^{-8}$ $\Rightarrow m_{Z'} < 1.2 \text{ TeV}$

University of Victoria

British Columbia · Canad

 $LFV \tau$ decays

2010

YEAR

BABAR

2010

YEAR

BELLE

BABAR

Backup Slides ...

mSUGRA: mixing at GUT scale

 $m_{GUT} = 5 \cdot 10^{15}$ GeV, $\tan \beta = 55$, $\mu > 0$, $A_0 = 0$, $m_{1/2} = 100 + 0.8 \cdot m_0$

- BaBar Physics Reach Assessment 2005 (O.Igonkina, SUSY05)
 - Model-independent calculation (A.Brignole, A.Rossi, NPB701(2004)3)
- S. Banerjee RGE using SPheno (W. Porod, CPC153(2003)275)

University of Victoria

mSUGRA + Seesaw: mixing by RGE

- $\mathcal{L} = Y_{\nu} L \tilde{H}_2 N_{\mathrm{R}}$, where $L : (\nu_{\mathrm{L}}, \ell_{\mathrm{L}}), N_{\mathrm{R}} : (\nu_{\mathrm{R}})$ $Y_{\nu} = V_R V_{MNS}, V_{R_{ii}}(\mathrm{m}_{\nu_{\mathrm{R}}}) = \sqrt{2\mathrm{m}_{\nu_{\mathrm{i}}}\mathrm{m}_{\nu_{\mathrm{R}}}}/v_2$ V_{MNS} : ν -mixing induces LFV at EW scale via RGE flow
- Solution Global Analysis of ν Data, M.C. Gonzalez-Garcia, hep-ph/0410030
- Cold Dark Matter (WMAP) with micrOMEGAs (CPC149(2002)103)

