Future Kaon Program at CERN

Giuseppe Ruggiero (CERN) "Flavour in the era of LHC" CERN, 09/11/2005

The Present: NA48/2

Goal

Method

Measurement of the Dalitz plot asymmetry of the $K^{\pm} \rightarrow 3\pi$ decays

- 60 GeV/c Kaon beams produced using ~10¹² protons per pulse @400 GeV/c from SPS
- Decays from K⁺ and K⁻ collected simultaneously
- <u>Data taking</u>
 - 2
- Data analysis

Results (preliminary 2003)

- 2003: ~1.6×10⁹ K[±] → $\pi^{\pm}\pi^{+}\pi^{+}$, ~4.8×10⁷ K[±] → $\pi^{\pm}\pi^{0}\pi^{0}$ collected
- **2004**
- ✓ Exploit K[±] simultaneity and frequent magnets polarity alternations for systematics cancellations

- ~10 times better precision than previous measurements
- Results consistent with SM predictions: $A_g < 10^{-4}$

Near future

2004 analysis:Same amount of data, more checks on systematics

The Present: NA48/2

Submitted to Phys. Rev. Lett.

The future: Kaons and CKM matrix

- $K \rightarrow \pi v \bar{v}$ decay is sensitive to V_{td}
- $|V_{td}|$ determination independent on B⁰- \overline{B}^0 mixing
- Theoretically the cleanest processes in K and B physics

- Standard Model predictions
 - BR(K⁺ $\rightarrow \pi^+ \nu \bar{\nu}) \approx (1.6 \times 10^{-5}) |V_{cb}|^4 [\sigma \eta^2 + (\rho_c \rho)^2] \rightarrow (8.0 \pm 1.1) \times 10^{-11}$
 - BR(K_L $\rightarrow \pi^{0} \nu \overline{\nu}) \approx (7.6 \times 10^{-5}) | V_{cb} | ^{4} \eta^{2} \rightarrow (3.0 \pm 0.6) \times 10^{-11}$

P326 **Beam tracker: Gigatracker** Si pixel stations across the 2nd achromat: size 36 mm (X)× 48 mm (Y) Rate: 800 MHz (charged particles) ~50MHz/cm² Low X/X_0 not to spoil the beam 300 Si µm sensor+ 100 Si µm chip Good space resolution not to spoil $\sigma(P_{\rm K})/P_{\rm K} \sim 0.4\%$ $300 \times 300 \,\mu m$ pixels $\sigma(\theta_{\rm K}) \sim 16 \,\mu rad$ the downstream tracker performances ш S **σ(t)** ~ 200 ps 35 **Dependence of S/B** for K $\rightarrow \pi^+\pi^0$ vs $\sigma(t)$ (per station) 30 Time coincidence with of the beam track 25 the downstream track 20 Complex readout chip to select the right K track 15 *bump-bonded on the* 10 5 sensor (0.25 or 0.13 µm CMOS technology) оE σ(t)_{rec} (ps) 50 100 150 200

Kinematics reconstruction

09-Nov-05

Future Kaon Program at CERN

Photon vetoes layout

Large angle: 13 ANTIs (10 < acceptance < 50 mrad), lead-scintillators
Medium angle: NA48 LKr (1 < acceptance < 10 mrad), homogenous calorimeter
Small angle: IRC1,2 SAC (acceptance < 1 mrad)

E_v (MeV)

• LKr: Rate ~7 MHz (μ) + ~4 MHz (γ)+~<u>3 MHz (π)</u>

Muon Veto (MAMUD)

- Sampling calorimeter + Magnet for beam deflection
- Rate: ~7 MHz (μ)+ ~3 MHz (π)

Acceptance ~ 10% is achievable

Analysis: background rejection

Events/year	Total	Region I	Region II
Signal (acc=17%)	65	16	49
$K^+ \rightarrow \pi^+ \pi^0$	2.7	1.7	1.0
$K^+ \rightarrow \mu^+ \nu$	1.2	1.1	<0.1
$K^+ \rightarrow e^+ \pi^+ \pi^- \nu$	~2	negligible	~2
Other 3 – track decays	~1	negligible	~1
$K^+ \rightarrow \pi^+ \pi^0 \gamma$	1.3	negligible	1.3
$K^+ \rightarrow \mu^+ \nu \gamma$	0.5	0.2	0.2
$K^+ \rightarrow e^+(\mu^+) \pi^0 \nu$, others	negligible	_	_
Total bckg.	9	3.0	6

▶ <u>S/B ~ 8</u> (Region I ~5, Region II ~9)

Other Physics Opportunities

- P-326 Kaon Flux ~100 times NA48/2 Kaon Flux
- Other physics opportunities can be addressed:
 - Cusp like effects:
 - $\checkmark \quad K^{\scriptscriptstyle +} {\rightarrow} \pi^0 \pi^0 e^{\scriptscriptstyle +} \nu$
 - Lepton flavour violation:
 - $\checkmark K_{e2}/K_{\mu2}, K^+ \rightarrow \pi^+ \mu^+ e^-, K^+ \rightarrow \pi^- \mu^+ e^+$
 - Search for new low mass particles:
 - $\checkmark \quad K^+ \rightarrow \pi^+ \pi^0 X$
 - $\checkmark \quad K^+ \rightarrow \pi^+ \pi^0 P \ (pseudoscalar \ sGoldstino)$
 - Improve greatly on rare radiative kaon decays

Conclusions

- Excellent NA48/2 results about $K^{\pm} \rightarrow 3\pi$ have been presented
- Near future: test of the CKM matrix using rare Kaon decays
- <u>P-326 experiment:</u> measurement of $|V_{td}|$ with a ~10% of accurancy, from the K⁺ $\rightarrow \pi^+ \nu \bar{\nu}$ decay
- We propose an experiment able to reach a ~10⁻¹² sensitivity per event at an existing machine and employing the infrastructures of an existing experiment. [CERN-SPSC-P-326, 11/06/2005]