Testing New Physics with the Unitarity Triangle Fit

http://www.utfit.org

M. Bona, M. Ciuchini, E. Franco, V. Lubicz, G. Martinelli, F. Parodi, M. Pierini, P. Roudeau, C. Schiavi, L. Silvestrini, A. Stocchi, V.Vagnoni

Recent papers: M. Bona et al. hep-ph/0509219 in publication M . Bona et al. (hep-ph/0501199) JHEP 0507 (2005) 028

Total Fit

Sides + $\varepsilon_{\rm K}$

Test of SM (I)

Test of SM (II)

we have a weak sign of a disagreement

sin2β=0.687±0.032 From direct measurement

sin2β =0.791±0.034 from indirect determination

Tension in the fit

It can be interpreted as a problem with data, but it could be evidence of New Physics

Where do we really are on our knowledge of UT ?

Fit with NP independent variables

Fit in a NP model independent approach

Fit with NP independent variables

If we use only Tree level processes -which can be assumed to be NP free-

(similar plot in Botella et al. hep-ph/0502133)

Fit in a NP model independent approach $\Delta m_d^{EXP} = C_q \Delta m_d^{SM}$

$$\Delta F=2$$

Parametrizing NP physics in $\Delta F=2$ processes

$$C_{q}e^{2i\varphi_{d}} = \frac{Q_{\Delta B=2}^{NP} + Q_{\Delta B=2}^{SM}}{Q_{\Delta B=2}^{SM}}$$

$$A_{CP}(J/\Psi K^{0}) = \sin(2\beta + 2\phi_{d})$$

$$\alpha^{EXP} = \alpha^{SM} - \phi_{d}$$
Soares, Wolf

$$|\varepsilon_{K}|^{EXP} = C_{\varepsilon} |\varepsilon_{K}|^{SM}$$
Soares, Wolf
Deshpande, I
Silva, Wolfe
Cohen et al.

Soares, Wolfenstein PRD47; Deshpande,Dutta, Oh PRL77; Silva, Wolfenstein PRD55; Cohen et al. PRL78; Grossman, Nir, Worah PLB407; Ciuchini et al. @ CKM Durham

5 free parameters (ρ , η , C_d , ϕ_d , $C_{\varepsilon K}$)

Using

Laplace et al., PRD65 NLO effects included

NP in $\Delta B=2$ and $\Delta S=2$ could be up to 50% wrt SM only if has the same phase of the SM

sensitive to small effects

Artificially removing the present disagreement $\sim 20\%$ @ 95% prob for generic ϕ_{NP}

TWO POSSIBLE SCENARIOS

Universal UT_{fit}

Buras et al. hep-ph/0007085

MFV = CKM is the only source of flavour mixing. ε_{κ} and Δm_{d} are not used (sensitive to NP).

Starting point for studies of rare decays see for instance : Bobeth et al. hep-ph/0505110

In models with one Higgs doublet or low/moderate tanβ ^b (D'Ambrosio et al. hep-ph/0207036) NP enters as additional contribution in top box diagram

$$S_0(x_t) - > S_0(x_t) + \delta S_0(x_t)$$

$$\delta S_0(x_t) = 4a \left(\frac{\Lambda_0}{\Lambda}\right)^2 \qquad \Lambda_0 = 2.4 TeV$$

 $\Lambda_{0} \text{ is the equivalent SM scale}$ $\Lambda_{0} > 5.1 TeV @ 95\% \qquad for \quad positive \quad \delta S(x_{t})$ $\Lambda_{0} > 3.6 TeV @ 95\% \qquad for \quad negative \quad \delta S(x_{t})$ $\Lambda/\Lambda_{0} \sim 2$

To be compared with tested scale using for instance b->s γ (9-12Tev) D'Ambrosio et al. hep-ph/0207036 2Higgs + large tan β \rightarrow also bottom Yukawa coupling must be considered

MFV

CKM Matrix in ≤ 2010 -where we will be

We have supposed that

- **B Factories** will collect 2ab⁻¹
- two years data taking at LHCb (4fb⁻¹)

Οι	utputs			
$sin(2\beta)$	0.694 ± 0.012			
$sin(2\alpha)$	-0.543 ± 0.093			
γ[°]	51.7 ± 3.0			
ρ	0.240 ± 0.017			
η	0.307 ± 0.010			

CKM2010

In the « sad » hypotesis the SM still work in 2010....

VERY IMPORTANT in ≤ 2010 : same and impressive precision on b \rightarrow d and b \rightarrow s transitions

Conclusions

UT*fits* are in a mature age with recent precise measurement of UT sides and angles

The SM CKM picture of CP violation and FCNC is strongly supported by data

Generic NP in the $b \rightarrow d$ start to be quite constrained

At least in this sector, we are beyond the alternative to CKM picture, and we should look at « corrections ».

Studied predented in MFV. We start to test interesting NP scales.

نے 150

100

50

0

-50

-100

0 0.5 1 1.5 2 2.5 3

We need precision measurements to test NP and to push the NP scale in interesting ranges and to play the complementarity at LHC

What about the b \rightarrow s Δ B=2 sector ? Still large room for NP. LHCb plays the central role on it.

and if SuperB.....

Plots from preliminary work from M.Pierini, MCiuchini....

BACKUP SLIDES

Next Step: Rare Decays (I)

Next Step: Rare Decays (II)

$$\frac{\mathbf{BR}(\mathbf{B} \to \boldsymbol{\rho}\boldsymbol{\gamma})}{\mathbf{BR}(\mathbf{B} \to \mathbf{K}^*\boldsymbol{\gamma})} \quad R = c_{\boldsymbol{\rho}}^2 \frac{r_m}{\xi^2} \frac{|a_7^c(\boldsymbol{\rho}\boldsymbol{\gamma})|^2}{|a_7^c(K^*\boldsymbol{\gamma})|^2} \frac{|V_{td}|^2}{|V_{ts}|^2} (1 + \mathbf{A}^{\mathbf{R}})$$

caveat: * SU(3) breaking effect * Λ_{QCD}/m_b corrections B(~cos α) to $\rho/\omega \gamma$ (smaller for B⁰ than B⁺)

$$|V_{td}/V_{ts}| = 0.10 \pm 0.45$$

[0.02,0.18] @ 95% Prob.

Using the $|V_{td}/V_{ts}|$ value from

Next Step: Rare Decays (III)

D'Ambrosio, Isidori hep-ph/0112135

Using

$$\begin{array}{ll} V_{ub}/V_{cb} & \Delta m_d & ACP \left(J/\Psi \, K\right) \\ \gamma \, (DK) & \epsilon_K \end{array}$$

	γ	C _d	cos2(β+φ)	sin2(α–φ)	sin(2β+φ)	$\mathbf{A}_{\mathbf{SL}}$	
SM-LIKE	60°	1	0.68	-0.23	0.96	OK	
NP1	60°	1	-0.68	0.96	-0.23	OK	
NP2	120°	0.4	0.68	-0.23	-0.96	10-2	
NP3	120°	0.4	-0.68	0.96	0.23	0K	
60 40 20 -20 -40 -60 -80 0 €.5				→ 150 100 50 -50 -100 4 B _d	- SM-lik		

CKM2010