Tauonic, Radiative & Electroweak B Decays at Super-B

Toru lijima Nagoya University

November 9, 2005 "Flavour in the era of the LHC" workshop @ CERN

Based on results and studies by Belle

Letter of Intent for KEK Super B Factory (KEK Report 2004-4) Physics at Super B Factory (hep-ex/0406071)

cf) SLAC-R-709, "The Discovery Potential of a Super B Factory" Proceedings of the 2003 SLAC Workshops

Physics Targets at Super-B

Search for new origin of CP violation flavor mixing and CPV. $B \rightarrow \phi K^0, \eta' K^0, K^+ K^- K^0$ Precise CKM Figure by Dr. Hayasaka (Nagoya Univ.) $\phi_1, \phi_1, \phi_1, |V_{ub}|, |V_{td}|$ Rare decays **FCNC** decays $b \rightarrow s\gamma, s\ell\ell, sv\overline{v} etc.$ This talk **Tauonic decays** $b \rightarrow c\tau v, \tau v \ etc.$ τ decays Lepton flavor violation $\tau \rightarrow \mu \gamma \ etc.$

Using O(10¹⁰) B and τ (~100 x now)

Tauonic B Decays

Charged Higgs contribution to B decays

$B \rightarrow \tau v$ (within the SM)

$$\mathcal{B}(B^- \to \ell^- \bar{\nu}) = \frac{G_F^2 m_B m_\ell^2}{8\pi} \left(1 - \frac{m_\ell^2}{m_B^2}\right)^2 f_B^2 |V_{ub}|^2 \tau_B$$

- Provide information of f_B|V_{ub}|
 - $|V_{ub}|$ from $B \rightarrow X_u | v \implies f_B$
 - $Br(B \rightarrow \tau v) / \Delta m_d \implies |V_{ub}| / |V_{td}|$

$$\Rightarrow$$
 cf) Lattice (δ ~16%)

Expected branching fraction

$$|V_{ub}| = (3.67 \pm 0.47) \times 10^{-3}$$

$$f_B = (0.196 \pm 0.032) \ GeV$$

$$Br(B \to \tau \nu) = (9.3 \pm 3.9) \times 10^{-5}$$

Full Reconstruction Method

Fully reconstruct one of the B's to tag

- B production
- B flavor/charge
- B momentum

Single B meson beam in offline!

Powerful tools for B decays w/ neutrinos

Fully Reconstructed Sample

Belle (253fb⁻¹): 275M BB \rightarrow 2.5×10⁵ B⁰B⁰ + 4.2×10⁵ B⁺B⁻

6

B \rightarrow τ v **Status** (Belle LP05/EPS05)

- Residual ECL energy $E_{residual} < 0.3 \, GeV$
- Total net charge

$$\sum_i Q_i = 0$$

etc.

Obtained Eresidual 0.15 GeV τ->evv $\tau \rightarrow \pi \nu$ τ→μνν Events E_{ECL} (GeV) E_{ECL} (GeV) E_{FCI} (GeV) - Data 15 Ge $\tau \rightarrow \pi \pi^0 \nu$ $\tau \rightarrow \pi^+ \pi^- \pi^+ \nu$ Background Signal×10 E_{ECI} (GeV) E_{FCL} (GeV)

• E_{ECL} shape in the sideband data is used to determine the background in the signal region

See K.Ikado's talk at EPS05 and hep-ex/0507034

Cont'd

Overall

- Signal efficiency = 33.7 %
- Expected signal = 13.5 (SM)
- Background est. = 31.4
- N observed = 39

 $Br(B \to \tau \nu) < 1.8 \times 10^{-4} (90\% CL)$

Upper limit calculated by M.L. fit.

Decay Mode	Efficiency(%)	Signal expeced	Background expeced	Observe			
$\tau^- \to \mu^- \nu \bar{\nu}$	9.8 ± 0.1	3.9 ± 0.1	11.8 ± 3.6	8			
$\tau^- ightarrow e^- \nu \bar{\nu}$	9.4 ± 0.1	3.8 ± 0.1	9.5 ± 3.2	10			
$\tau^- \to \pi^- \nu$	8.4 ± 0.1	3.4 ± 0.1	3.5 ± 1.7	11			
$\tau^- \to \pi^- \pi^0 \nu$	3.5 ± 0.1	1.4 ± 0.1	3.0 ± 1.8	4			
$\tau^- \to \pi^- \pi^+ \pi^- \nu$	2.6 ± 0.1	1.0 ± 0.1	3.6 ± 2.2	6			
Total	33.7 ± 1.4	13.5 ± 0.2	31.4 ± 5.9	39			

No significant excess

 $\tau \rightarrow \pi^{-} v$ mode has the best S/N ~1.

Prospect

(BaBar 232M BB, hep-ex/0507069)

- Tag eff ~ 1.75 × 10-3
- Signal selection eff. ~31%
- Similar S/N to Belle

 $Br(B \rightarrow \tau \nu) < 2.8 \times 10^{-4} (90\% CL)$

$B \rightarrow D \tau v$ (MC studies)

- Use fully reconstructed samples.
- T decay modes

 $\tau^- \to \mu^- \nu \overline{\nu}, e^- \nu \overline{\nu} \ , \pi^- \nu, \rho^- \nu$

- Analysis cuts;
 - Reject events w/ p, KL
 - Reject $\mathcal{D}^{(\star)} \tau v$ contamination $\left| m_{D^{\star 0}} - m_{D^0} - 142 \right| < 10 \,\mathrm{MeV/c^2}$
 - No remaining charged or $\pi^{\rm O}$ tracks
 - ECL residual energy

 $E_{residual} < 100 MeV$

- Angle between two $\mathbf{v}'\mathbf{s}$

 $-1.0 \le \cos \theta_{_{VV}} \le 0.8$

- Missing mass

$$|p_B - p_D - p_\ell|^2 > 1.2 (GeV/c^2)^2$$

Arbitrary (log $B \rightarrow D\tau(e\nu\nu)\nu$ signal [Խաշիշիշիլիսի Signal 2 n IMMI² [(GeV/c²)²] $B^+ \rightarrow D\tau (e\nu\nu)\nu BG$ BG n 2 $|MM|^2 [(GeV/c^2)^2]$

Cont'd

• Signal selection efficiency

- $\overline{D}^{0}\tau^{+}(e^{+}\overline{v}_{\tau}v_{e})v_{\tau} \quad 10.2\% \qquad \overline{D}^{0}\tau^{+}(\pi^{+}\overline{v}_{\tau})v_{\tau} \quad 26.1\% \\
 \overline{D}^{0}\tau^{+}(\mu^{+}\overline{v}_{\tau}v_{e})v_{\tau} \quad 2.6\% \qquad \overline{D}^{0}\tau^{+}(\rho^{+}\overline{v}_{\tau})v_{\tau} \quad 13.3\%$
- Expectation at 5 / 50 ab⁻¹ for B⁺ decay

	5ab-1				50ab-1			
Mode	Nsig	Nbkg	Σ	dB/B	Nsig	Nbkg	Σ	dB/B
$\overline{D}{}^0 au^{\scriptscriptstyle +}(\ell^+\overline{ u}_{_ au} { u}_{_ au}) { u}_{_ au}$	280	550	12.7	7.9%	2800	5500	40.3	2.5%
$\overline{D}^0 au^{\scriptscriptstyle +}(h^{\scriptscriptstyle +}\overline{ u}_{ au}) u_{ au}$	620	3600			6200	36000		

5σ observation possible at 1ab^-1

• Major background source

Missing charged and γ tracks from $B \rightarrow D^{(*)} | v X$ (incl. slow π)

Constraint to Charged Higgs

Once branching fraction is measured, we can constrain R.

 ρ can be determined experimentally by B semiletonic decays

b→sγ/sl+l⁻

Possible to search for NP in theoretically clean way.

Effective Hamiltonian for b \rightarrow s $H_{eff} = -\frac{4G_F}{\sqrt{2}}V_{ts}^*V_{tb}\sum_{i=1}^{10}C_i(\mu)O(\mu)$

 $|C_7|$ by $B \rightarrow Xs\gamma$, Sign of C_7 , C_9 , C_{10} by $B \rightarrow XsII$

Many observables;

- Branching fractions
- Mixing indcued CPV
- Direct CPV
- Forward-backward asym.
- Ratio of exclusive modes

M(H⁺) > 350 GeV already in TYPE II 2HDM

Measurement of $B(B \rightarrow X_s I^+I^-)$

Semi-inclusive technique

- X_s is reconstructed from K⁺ or K_s + 0-4 π (at most one π^0 is allowed)
- M_{Xs} < 2.0 GeV
- Electron or muon pair
 - M₁₁>0.2GeV
 - Charmonium veto

 $\mathcal{B}(B \to X_{s}\ell^{+}\ell^{-}) = (4.11 \pm 0.83 \stackrel{+0.85}{_{-0.81}})10^{-6}$ $\mathcal{B}(B \to X_{s}e^{+}e^{-}) = (4.04 \pm 1.30 \stackrel{+0.87}{_{-0.83}})10^{-6},$ $\mathcal{B}(B \to X_{s}\mu^{+}\mu^{-}) = (4.13 \pm 1.05 \stackrel{+0.85}{_{-0.81}})10^{-6}$

Theoretical prediction by Ali et al. $\mathcal{B}(B \to X_s \ell^+ \ell^-) = (4.20 \pm 0.70) 10^{-6}$ M. Iwasaki et al. submitted to PRD, hep-ex/0503044 140/fb data

16

Constraints on C_i from $B(B \rightarrow \chi_s I^+I^-)$

P.Gambino, U.Haisch and M.Misiak PRL 94 061803 (2005)

- Clean prediction for $B(B \rightarrow X_s II)$ with $1 < q^2 < 6 GeV^2$ is available.
 - Combine Belle and Babar results
 - Sign of C_7 flipped case with SM C_9 and C_{10} value is unlikely.

BF	Belle	Babar	WA	SM	$C_7 = -C_7^{SM}$
q^{2} >(2 m_{μ}) ²	4.11±1.1	5.6 ± 2.0	4.5±1.0	4.4±0.7	8.8±0.7
1 <q<sup>2<6GeV²</q<sup>	1.5±0.6	1.8±0.9	1.60 ± 0.5	1.57±0.16	3.30 ± 0.25

B→K^{*}II FB Asymmetry

A_{FB}: Belle Summer '05

- 357fb⁻¹ (386M BB)
- N(K*II)=114+-14 (purity 44%)
- Unbinned M.L. fit to $d\Gamma^2/dsd(cos\theta)$
 - 8 event categories
 - Signal + 3 cross-feed + 4 bkg.
 - Ali et al's form factor
 - Fix $|A_7|$ to SM
 - Float A_9/A_7 and A_{10}/A_7 $A_{FB}^{\text{bkg-sub}}(B \rightarrow K^*\ell\ell) = 0.56 \pm 0.13 \text{(stat.)}$

$$\begin{array}{rcl} \mathbf{M} & A_9/A_7 & = & -15.3 \, {}^{+3.4}_{-4.8} \pm 1.1, \\ A_{10}/A_7 & = & 10.3 \, {}^{+5.2}_{-3.5} \pm 1.8, \end{array}$$

$$\mathbf{w} \begin{array}{rcl} A_9/A_7 &=& -16.3 \, {}^{+3.7}_{-5.7} \pm 1.4, \\ A_{10}/A_7 &=& 11.1 \, {}^{+6.0}_{-3.9} \pm 2.4, \end{array}$$

Sign of A_9A_{10} is negative !

See Hep-ex/0508009 & A.Ishikawa's talk at EPS05

Prospect at Super-B

1000 pseudo experiments w/ SM input values

 $\delta C_9 \sim 11\%$ $\delta C_{10} \sim 14\%$ $\delta q_0^2/q_0^2 \sim 11\% \implies 5\% \text{ at } 50 \text{ ab}^{-1}$ 20

Radiative Decays

Inclusive $Br(b \rightarrow s\gamma)$	$ C_7 , S$	C ₇ , SF for V _{ub}			
■ B→K*γ isospin asym	metry (Δ +-) sign o	f C ₇			
Mixing induced CPV					
■ Direct CPV in $B \rightarrow X_{c}$	Υ	0.5 ab^{-1}	5 ab^{-1}	50 ab^{-1}	
■ B→X _d γ	Branching fraction				
	$\mathcal{B}(B \to X_s \gamma)$	<10%	"5%"	still 5%	
	$\mathcal{B}(B \to X_d \gamma)$		—	possible?	
	Sign of C ₇				
	$\Delta_{0+}(B\to K^*\gamma)$	4%	2%	no better	
	$\Delta_{0+}(B\to\rho\gamma)$	possible?	reasonable	precise	
Summary by M.Nakao	Mixing CPV				
1st Super-B workshop	$S(K_{S}^{0}\pi^{0}\gamma)$		0.12	0.05	
at Hawaii	$S(K_{\rm S}^0\phi\gamma)$	_	0.5	0.15	
	$S(K_1(1270)\gamma)$	·	difficult?	possible?	
	Direct CPV				
	$A_{CP}(B \rightarrow X_s \gamma)$ inclusive	4.5%	1.4%	0.5%	
	$A_{CP}(B \rightarrow X_s \gamma)$ sum-of-excl.	3%	1%	0.5%	
	$A_{CP}(B \to K^* \gamma)$	1.8%	0.6%	0.2%	

$B \rightarrow X_{s\gamma} CP A symmetry$

- Sensitive to NP.
- Theoretically clean.
- Standard Model "~Zero".
 - Gamma is polarized, and the final state is almost flavor specific.
 - Helicity flip of γ suppressed by ~m_s/m_b
- Time dependent CPV requires vertex reconstruction with Ks $\rightarrow \pi + \pi -$

Vertex recon. Eff. 51% (SVD2) 40% (SVD1)

B⁰→**K**_S π ⁰ γ tCPV: Belle Summer '05

$A_{cn}(B \rightarrow X_{s\gamma})$ vs SUSY models

T. Goto, Y.Okada, Y.Shimizu, T.Shindou, M.Tanaka hep-ph/0306093, also in SuperKEKB LoI

Summary

Tauonic, Radiative and Electroweak B decays are of great importance to probe new physics.

■ We are starting to measure $B \rightarrow \tau v$, $D\tau v$, $A_{FB}(K^*II)$, $A_{CP}(K\pi^0\gamma)$ etc. at the current B factories. Hot topics in the coming years !

■ For precise measurements, we need Super-B! Expected precision (5ab⁻¹→50ab⁻¹);

- Br(tv):
- Br(Dτν):
- q_0^2 of $A_{FB}(K^{*II})$:
- **Α**_{CP}(Kπ⁰γ) †CPV:
- 13%→7% 7.9%→2.5%
- 11%→5%
- 0.14→0.04

Backup Slides

CPV in b→s and SUSY Scenario

Different SUSY breaking scenario can be distinguished in A_{cp}^{mix}(φKs) - A_{cp}^{mix}(K*⁰γ) correlation.

Correlation of other ovservables are also useful. $A_{cp}^{dir}(X_{s}\gamma), A_{FB}(X_{s}II), Br(\tau \rightarrow \mu\gamma), CKM$

New Measurement of A_{FB}(q²) in K*II

- Forward-backward asymmetry is induced by interference btw virtual photon and Z⁰ contributions.
- Relative signs of C₇ to C₁₀ and C₉ to C₁₀ can be determined from A_{FB}(B→K*II)!!

$$\frac{\mathrm{d}}{\mathrm{d}\hat{s}}(\Gamma_F^{K*} - \Gamma_B^{K*}) = -\frac{G_F^2 \alpha^2 m_B^5}{2^8 \pi^5} |V_{ts}^* V_{tb}|^2 \hat{s}\hat{u}(\hat{s})^2 \\ \times \left[\frac{\mathrm{Re}(C_9^{\mathrm{eff}}) C_{10} V A_1 + \frac{\hat{m}_b}{\hat{s}} C_7^{\mathrm{eff}} C_{10} (V T_2(1 - \hat{m}_{K^*}) + A_1 T_1(1 + \hat{m}_{K^*})) \right] .$$

We do not use C_i but A_i which is leading coefficients.

Fit to q^2 and $cos\theta$ for the di-lepton system

- Fit to normalized double differential decay width $(1/\Gamma) d^2\Gamma/dsdcos\theta$
- 8 event categories
 - o signal
 - 3 cross-feeds
 - Correctly flavor tagged K*II
 - Incorrectly flavor tagged K*II
 - b→sll process other than K*ll
 - o 4 backgrounds (fraction)
 - di-lepton background (80%)
 - K*lh background (h=K, π) (17%)
 - K*hh background (1.7%)
 - ψ background (1.3%)
- Ali et al.'s form factor model is used.
- Event by event signal fraction is obtained from the M_{bc} fit.
- Fix A₇ to the SM value -0.330 or sign flipped value +0.330
- Float A₉/A₇ and A₁₀/A₇