

The MEG experiment (and beyond)

A. M. Baldini I NFN Pisa

Recent $\mathbf{m} \rightarrow e^{_{\tau}} \gamma$ Experiments

Lab.	Year	Upper limit	Experiment or Auth.
PSI	1977	< 1.0 × 10 ⁻⁹	A. Van der Schaaf et al.
TRIUMF	1977	< 3.6 × 10 ⁻⁹	P. Depommier <i>et al</i> .
LANL	1979	< 1.7 × 10 ⁻¹⁰	W.W. Kinnison et al.
LANL	1986	< 4.9 × 10 ⁻¹¹	Crystal Box
LANL	1999	< 1.2 × 10 ⁻¹¹	MEGA
PSI	~2008	~ 10 ⁻¹³	MEG

Two orders of magnitude improvement

tough experimental challenge! But several SUSY GUT and SUSY see-saw models predict BRs at the reach of MEG

	Required Performances								
	The sensitivity is limited by the accidental backg								
The I	he n. of acc. backg events (n _{acc}) depends quadratically on the muon rate								
Eff	Effective BRback ($n_{back}/R\mu T$) $BR_{acc} \propto R_{\mu} \times \frac{?E_e \times ?E_2^2}{E_e \times ?E_2^2} \times ?E_e^2 \times ?t_e \approx 2.10$								
((BRphys ≈ 0.1 BRacc)								
allows $BR(\mu \rightarrow e\gamma) \approx 10^{-13}$ but needs resolutions of the Michel and									
				FWF	ЧМ		radiative	decay spec	stra
E	xp./Lab	Year	$\mathbf{D}E_{e}/E_{e}$	DE_{γ}/E_{γ}	D t _{ey}	Dq _{eγ}	Stop rate	Duty	BR
			(%)	(%)	(ns)	(mrad)	(s ⁻¹)	cyc.(%)	(90% CL)
	SIN	1977	8.7	9.3	1.4	-	5 x 10 ⁵	100	3.6 x 10 ⁻⁹
T]	RIUMF	1977	10	8.7	6.7	-	2 x 10 ⁵	100	1 x 10 ⁻⁹
]	LANL	1979	8.8	8	1.9	37	2.4 x 10 ⁵	6.4	1.7 x 10 ⁻¹⁰
Cry	ystal Box	1986	8	8	1.3	87	4 x 10 ⁵	(69)	4.9 x 10 ⁻¹¹
Ν	MEGA	1999	1.2	4.5	1.6	17	2.5 x 10 ⁸	(67)	1.2 x 10 ⁻¹¹
	MEG	2008	0.8	4	0.15	19	2.5 x 10 ⁷	100	1 x 10 ⁻¹³

January 25th/26th 2005

Need of a DC muon beam

1

Experimental method

Detector outline

- Stopped beam of 3 $10^7 \mu$ /sec in a 150 μ m target
- Solenoid spectrometer & drift chambers for e⁺ momentum
- Scintillation counters for e⁺ timing
- Liquid Xenon calorimeter for γ detection (scintillation)
 - fast: 4 / 22 / 45 ns
 - high LY: ~ 0.8 * Nal
 - short X_0 : 2.77 cm

1) The PSI pE5 DC beam

Beam studies

Optimization of the beam elements:

- Wien filter for μ /e separation
- Degrader to reduce the momentum stopping in a 150 μm CH $_2$ target
- Solenoid to couple beam with COBRA spectrometer

Results (4 cm target):

Z-version

6*10⁷ μ⁺/s

- R_{μ} (total) 1.3*10⁸ μ^+/s
- Rµ (after W.filter & Coll.) $1.1*10^8 \mu$ /s
- R_μ (stop in target)
- Beam spot (target) $\sigma \approx 10 \text{ mm}$ $\mu/e \text{ separation}$ (at collimator) 7.5 σ (12 cm)

 $10^8\,\mu/s$ could be stopped in the target but only $3x10^7$ will be used because of accidental background

2) COBRA spectrometer

COnstant Bending RAdius (COBRA) spectrometer

• High p_T positrons quickly swept out

Constant bending radius independent of emission angles

 $\mathbf{\Lambda}$

The magnet (KEK+Tokyo)

- B_c = 1.26T current = 359A
- Five coils with three different diameters
- Compensation coils to suppress the stray field around the LXe detector
- High-strength aluminum stabilized superconductor ⇒thin magnet
 - $(1.46 \text{ cm Aluminum}, 0.2 \text{ X}_0)$

•Ready: at PSI

Positron Tracker

Drift chambers R&D (1)

 $\mathbf{s}_{R} = 93 \pm 10 \,\mathrm{mm}$ $\mathbf{s}_{Z} = 425 \pm 7 \,\mathrm{mm}$

3) Positron Timing Counter

- One (outer) layer of scintillator read by PMTs : timing
- One inner layer of scintillating fibers read by APDs: trigger (the long. Position $5 \times 5 \text{ mm}^2$

is needed for a fast estimate of the positron direction) •Goal σ_{time} ~ 40 psec (100 ps FWHM)

Timing counter measured resolution

Exp. application (*)	Counter size (cm) (T x W x L)	Scintillator	РМТ	$\lambda_{\rm hff}\left({ m cm} ight)$	$\sigma_t(\mathrm{meas})$	Ø _t (exp)
G.D.Agostini	3x 15 x 100	NE114	XP2020	200	120	60
T. Tanimori	3 x 20 x 150	SCSN38	R1332	180	140	110
T. Sugitate	4 x 3.5 x 100	SCSN23	R1828	200	50	53
R.T. Gile	5 x 10 x 280	BC408	XP2020	270	110	137
TOPAZ	4.2 x 13 x 400	BC412	R1828	300	210	240
R. Stroynowski	2 x 3 x 300	SCSN38	XP2020	180	180	420
Belle	4 x 6 x 255	BC408	R6680	250	90	143
MEG	4 x 4 x 90	BC404	R5924	270	38	

Best existing TC

4) Liquid Xe calorimeter

LEDs O

LP: LXe optical properties

- •First tests showed that the number of scintillation photons was MUCH LESS than that expected
- •It improved with Xe cleaning: Oxysorb + gas getter + re-circulation (took time)
- •There was a strong absorption due to contaminants (mainly H_2O)

Present (oct. 2004)

January 25th/26th 2005

March 2002

Experimentally measured resolutions

PMT Deve	lopment Summary
----------	-----------------

1 st generation R6041Q	2 nd generation R9288TB	3 rd generation R9288ZA			
228 in the LP (2003 CEX and TERAS) 127 in the LP (2004 CEX)	111 In the LP (2004 CEX)	Not used yet in the LP			
Rb-Sc-Sb Mn layer to keep surface resistance at low temp.	K-Sc-Sb Al strip to fit with the dynode pattern to keep surface resistance at low temp.	K-Sc-Sb Al strip density is doubled. 4% loss of the effective area.			
1 st compact version QE~4-6% Under high rate background, PMT output reduced by 10 -20% with a time constant of order of 10min.	Higher QE ~12-14% Good performance in high rate BG Still slight reduction of output in very high BG	Higher QE~12-14% Much better performance in very high BG			
January 25th/26th 2005					

Readout electronics

wo DRS chips in the recent PSI test

- 10ch/chip (8 for data and 2 for calibration) → in total 16 for data
- 2.5GHz sampling (400ps/sample)
- 1024 sampling cells
- Readout 40MHz 16bit
- Free running domino wave stopped by trigger from LP

•DRS inputs

•LP: central 12 PMTs •LYSO: 2 anode signals for each DRS chip as time reference

•DRS chip calibration

•Spike structure left even after calibration, which will be fixed by re-programming FPGA on the board.

Sensitivity Summary

Detector parameters $T = 2.6 \cdot 10^7 \, s$ $R_{\mu} = 0.3 \cdot 10^8 \, \frac{\mu}{s}$ $\frac{O}{4p} = 0.09$ $e_e \approx 0.9$ $e_{sel} \approx (0.9)^3 = 0.7$ $e_{?} \approx 0.6$ Cuts at 1,4×FWHM $N_{\rm sig} = BR \cdot T \cdot R_{\mu} \cdot \frac{\Omega}{4 \, \mathbf{n}} \cdot \mathbf{e}_{\rm e} \cdot \mathbf{e}_{g} \cdot \mathbf{e}_{\rm sel}$ Signal $SES = \frac{1}{T \cdot R_{\mu}} \cdot \frac{\Omega}{4n} \cdot \boldsymbol{e}_{e} \cdot \boldsymbol{e}_{g} \cdot \boldsymbol{e}_{sel}$ Single Event Sensitivity $BR_{\rm acc} \propto R_{\rm u} \times ? E_{\rm e} \times ? E_{\rm ?}^2 \times ? ? ?_{\rm e?}^2 \times ? t_{\rm e?} \approx 2 \times 10^{-14}$ Backgrounds $BR_{\rm phys} \approx 3 \times 10^{-15}$

Upper Limit at 90% CL $BR(\mu \rightarrow e\gamma) \approx 1 \times 10^{-13}$

Discovery

4 events (P = 2×10^{-3}) correspond BR = 2×10^{-13}

Time Scale

- We hope to get a significant result before entering the LHC era
- Measurements and detector simulation make us confident that we can reach the SES of 4 x 10⁻¹⁴ to $\mu \rightarrow e\gamma$ (BR 10⁻¹³) and possibly below...
- Time profile

Possible improvements (how to reduce the accidental background) in MEG (and beyond): 1)? E_2

(J. Aysto et al., Physics with low-energy muons at a neutrino factory complex, CERN-TH/2001-231)

• In order to use $10^8 \,\mu/s$ a factor 10 in the reduction of acc. background must be achieved

 $BR_{\rm acc} \propto ? E_?^2$

- Complete MC simulation
- At l_{abs} [®]¥ the resolution is dominated by photostatistics FWHM(E)/E ≈ 2.5% (including edge effects)
- Future better detectors with high enough acceptance ?

Possible improvements in MEG (and beyond): 2) $\ensuremath{\text{P}\mu}$

- \bullet For suitable geometry big η factors can be obtained
- This is not the case for MEG (detailed calculations are necessary)
- In some theories (minimal SU(5) model) the positron has a definite helicity \rightarrow Pµ is less effective

Beyond: sensitivity to 10⁻¹⁵?

 Increase of the muon stopping rate by one order of magnitude→ quadratic increase of the accidental background...

Beyond... (I deas) 3) ? E_{e^+}

• Use of beta spectrometers: ? E_{e^+} / E_{e^+} from 1% \rightarrow .1% (background reduction of one order of magnitude)

Beyond... (I deas) 4) ? \boldsymbol{q}_{e^+g}

•Determined by m.s. in the stopping target \rightarrow reduction of the target thickness (one order of magnitude \rightarrow reduction of a factor 3 in ? q_{e^+g} factor 10 reduction in the accidental background)

Beyond... (I deas) 5) target subdivision

• Spread of two individual (normal) decays in space: (another factor 10)

BUT

- Photon detector must have a good directionality to distinguish between two targets
- How to combine with the acceptance of a beta spectrometer ?

CONCLUSIONS

- MEG will start its data taking sometimes next year and hopes to get significant results before the LHC era
- Future improvements in the sensitivity of $\mu \rightarrow e\gamma$ experiments are possible at the cost of intense detectors R&D, very careful apparatus design and probably high costs
- worth taking into account the possibility of studying related processes: $\mu \rightarrow e$ conversion (see Y. Kuno's talk)