
A Globus Toolkit Introduction
Developer’s Overview

Peter Praxmarer

praxmarer@gup.jku.at

GUP Linz

Johannes Kepler Universität Linz

Austria

Peter Praxmarer AustrianGrid Workshop 2004 – p.1/75

Agenda

1. Grid Computing?

2. Key Concepts

3. Globus Toolkit 2 Components (Developer’s View)
Resource Management
Data Management
Security
Common Runtime Components
Information Services

4. Outlook to OGSA

5. Links

Peter Praxmarer AustrianGrid Workshop 2004 – p.2/75

Grid Computing: Basic Definitions

Grid “A computational grid is a hardware and software
infrastructure that provides dependable, consistent,
pervasive, and inexpensive access to highend
computational capabilities.” (Ian Foster, 1999)

Virtual Organization Is a
Set of entities (persons, organizations)
Sharing their resources
Temporarily
Controlled

Peter Praxmarer AustrianGrid Workshop 2004 – p.3/75

Why Grid Computing?

Exploiting underutilized resources

Parallel CPU capacity

Virtual Organizations for collaboration

Access to special/additional resources

Reliability

Peter Praxmarer AustrianGrid Workshop 2004 – p.4/75

Grid Middleware: The Globus Project

Basic research in grid-related technologies

Development of the Globus Toolkit

Construction of Testbeds

→ Aims at providing a production-ready grid
middleware

Peter Praxmarer AustrianGrid Workshop 2004 – p.5/75

The Globus Toolkit

“Bag of services”

Layered Architecture:
Grid Fabric Layer Information hiding of basic OS services

(IO, libc, threads, ...)
Grid Services Layer Basic Grid services for resource

management, data management, information
services, and security

Application Toolkit Layer Specialized services for various
problem domains

Application Layer Grid applications using the services of
the underlying layers.

Peter Praxmarer AustrianGrid Workshop 2004 – p.6/75

Globus Toolkit 2 Components

Security (authentication, authorization, integrity,
confidentiality) → GSI

Remote process invocation/execution → GRAM

Data Management → GridFTP, GASS

Information Services → MDS

→ Encapsulated in so-called modules

Peter Praxmarer AustrianGrid Workshop 2004 – p.7/75

Globus Modules

A Globus module is a software unit encapsulating those
functions which logically belong together.

Five main components

Resource management
Data management
Information services
Security
Common Libraries

Peter Praxmarer AustrianGrid Workshop 2004 – p.8/75

GT2 Development Basics(1)

Flavors: The Globus Toolkit components can be
installed using different ’flavors’. Flavors define the

Compiler: gcc, vendorcc, mpicc
Architecture: 32, 64
Debug-Information
Threading: pthread, no-thread

e.g. gcc32dbgpthr

When compiling your own application NEVER mix
different flavors!! (e.g. gcc
-I/opt/globus/include/gcc32dbg
-L/opt/globus/lib myapp.c
-lglobus_common_gcc32dbgpthr)

→ use globus-makefile-header instead

Peter Praxmarer AustrianGrid Workshop 2004 – p.9/75

GT2 Development Basics(2)

globus-makefile-header: Prints all Globus relevant
paths and tools; should be included (and used) in the
project’s makefile

Example usage:

globus-makefile-header --flavor gcc64pthr
> globus makefile header.mk

Peter Praxmarer AustrianGrid Workshop 2004 – p.10/75

GT2 Development Basics(3)

Include the output in the project’s makefile:

Project Makefile

include globus_makefile_header.mk

all: myapp

%.o: %.cc

$(GLOBUS_CXX) -g -c -I. $(GLOBUS_CPPFLAGS) $< -o $@

myapp: myapp.o

$(GLOBUS_CXX) -g -o $@ $(GLOBUS_CPPFLAGS) \

$(GLOBUS_LDFLAGS) $ˆ $(GLOBUS_PKG_LIBS)

Peter Praxmarer AustrianGrid Workshop 2004 – p.11/75

Globus Module Activation(1)

Before a Globus-Module can be used it needs to be
activated globus_module_activate()

After it’s use it should be deactivated
globus_module_deactivate()

Dependent modules are automatically activated

Modules can be loaded more than once

Peter Praxmarer AustrianGrid Workshop 2004 – p.12/75

Globus Module Activation(2)

Typical pattern:
#include ‘‘globus_common.h’’

#include ‘‘globus_io.h’’

int main() {

// ...

globus_module_activate(GLOBUS_IO_MODULE);

// ... (use)

globus_module_deactivate(GLOBUS_IO_MODULE);

// ...

}

Peter Praxmarer AustrianGrid Workshop 2004 – p.13/75

Globus Error Reporting

Globus functions typically return a globus_result_t
object

On success: GLOBUS_SUCCESS

Otherwise the error can be printed using the functions:
globus error get() Takes a globus_result_t

structure and returns a globus_object_t* object.
globus object printable to string() Takes a

globus_object_t* and returns a zero-terminated
C-string

Peter Praxmarer AustrianGrid Workshop 2004 – p.14/75

Resource Management: GRAM

Grid Resource Allocation Management (GRAM)

Resource Specification Language (RSL) is used to
communicate requirements

GRAM provides remote invocation

Peter Praxmarer AustrianGrid Workshop 2004 – p.15/75

GRAM Components

Peter Praxmarer AustrianGrid Workshop 2004 – p.16/75

Resource Specification Language (RSL)

Common language for specifying a jobs needs

Requirements are specified by a conjunction of
(key=value) pairs

&(executable="/bin/ls")
(count=4)
(arguments="-la")

Basic form of each pair: (attribute op value [
value ...])

Operators (op): <,<=,=, >=, >, ! =

GRAM understands a well-defined set of attributes

Unknown attributes are passed through

Peter Praxmarer AustrianGrid Workshop 2004 – p.17/75

Constraints: “&”

“Create 5-10 instances of myprog, each on a machine
with at least 64 MB memory that I can use for 4 hours”

Can be expressed using:

&(count>=5)(count<=10)
(max_time=240)(memory>=64)
(executable=myprog)

Peter Praxmarer AustrianGrid Workshop 2004 – p.18/75

Disjunction: “|”

“Create 5 instances of myprog, each on a machine with
at least 64 MB of memory, or 10 instances on machines
with at least 32 MB of memory”

Can be expressed using:

&(executable=myprog)
(|(&(count=5)(memory>=64))
(&(count=10)(memory>=32))

)

Peter Praxmarer AustrianGrid Workshop 2004 – p.19/75

RSL Attributes(1)

(executable=string) Program to execute

(directory=string) Current/working directory

(arguments=arg1 arg2 arg3 ...) Argument list

(environment=(E1=v1)(E2=v2) ...) Environment
variable list

(stdin=string) Stdin for the program; Can be a file
path or an URL

(stdout=string) Stdout for the program; Can be a file
path or an URL

(stderr=string) Stderr for the program; Can be a file
path or an URL

Peter Praxmarer AustrianGrid Workshop 2004 – p.20/75

RSL Attributes(2)

(count=integer) Number of processes to run

(hostCount=integer) Number of nodes to distribute
the ’count’ processes across

(project=string) Project against which to charge

(queue=string) Queue into which to submit the job

(maxTime=integer) Maximum wall clock or CPU
runtime (scheduler’s choice) in minutes

(maxWallTime=integer) Maximum wall clock runtime in
minutes

Peter Praxmarer AustrianGrid Workshop 2004 – p.21/75

RSL Attributes(3)

(maxMemory=integer) Maximum amount of memory for
each process in megabytes

(minMemory=integer) Minimum amount of memory for
each process in megabytes

(jobType=value) Values are:
mpi: Job is an mpi-program, thus it is started using
mpirun -np <count>

single: Only run a single instance of the program,
and let the program start the other <count>-1
processes
multiple: Start <count> instances of the program
using the appropriate schuduler mechanism
condor: Start <count> Condor processes running in
“standard universe”

Peter Praxmarer AustrianGrid Workshop 2004 – p.22/75

RSL Attributes(4)

(gramMyjob=value) Defines how the
globus_gram_myjob library will operate on the
<count> processes:
collective Treat all <count> processes as part of a

single job
independent Treat each of the <count> processes as

an independent uniprocessor job

(dryRun=true) Do not actually run the job

Peter Praxmarer AustrianGrid Workshop 2004 – p.23/75

RSL Attributes(5)

(save state=yes) Jobmanager (should) save the job
state to disc, in order to recover after a jobmanager’s
crash

(two phase=integer) Implement a two-phase commit
for job submission and completion; time out after <int>
seconds

(restart=<old jobmanager contact>) Start a new
jobmanager but instead of submitting a new job, start
watching over an existing job

(std[out|err] position=integer) Specified as part
of a job restart

Restart file streaming from this byte

Peter Praxmarer AustrianGrid Workshop 2004 – p.24/75

RSL Substitutions

RSL supports simple variable substitutions

Defined as a list of pairs:
(rslSubstitution=(SUBST1 val1)(SUBST2 val2))

Applied by $(SUBST)

Processing order:
1. Within scope, processed left-to-right
2. Outer scope is processed before inner scope
3. Variable definition can refer previously defined

variables

Peter Praxmarer AustrianGrid Workshop 2004 – p.25/75

RSL Substitution: Example

This
&(rslSubstitution=(URLBASE ‘‘ftp://whereever’’))

(rslSubstitution=(URLDIR $(URLBASE)/dir))

(executable=$(URLDIR)/executable)

is equivalent to
&(executable=ftp://whereever/dir/executable)

Peter Praxmarer AustrianGrid Workshop 2004 – p.26/75

RSL: Predefined Substitutions

GLOBUS_HOST_MANUFACTURER

GLOBUS_HOST_CPUTYPE

GLOBUS_HOST_OSNAME

GLOBUS_HOST_OSVERSION

GLOBUS_LOCATION

HOME

LOGNAME

GLOBUS_ID

Peter Praxmarer AustrianGrid Workshop 2004 – p.27/75

globus_rsl

Functions for manipulating RSL expressions
Parse a RSL into a data structure
Manipulate it
Unparse the data structure into a string

Peter Praxmarer AustrianGrid Workshop 2004 – p.28/75

GRAM: Tools

globus-job-run Submits a job to a gatekeeper.
e.g. globus-job-run
hydra.gup.uni-linz.ac.at /bin/hostname

Lots of options
Dump the RSL string with -dumprsl

globusrun Takes a RSL expression and submits it to the
specified resource

globusrun -r hydra.gup.uni-linz.ac.at
’&(executable=/̈bin/hostname)̈’

globusrun -r hydra.gup.uni-linz.ac.at
-f job.rsl

Peter Praxmarer AustrianGrid Workshop 2004 – p.29/75

GRAM: Submitting a MPI Job

+
(&(resourceManagerContact="hydra")
(count=8)
(maxtime=60)
(jobtype=mpi)
(label="subjob 0")
(environment=(GLOBUS_DUROC_SUBJOB_INDEX 0)
(LD_LIBRARY_PATH /opt/globus/lib))

(directory=/home/guppy/pprax)
(executable=/home/guppy/pprax/mpiprogram)
(stdout=/home/guppy/pprax/mpiprogram.out)
(stderr=/home/guppy/pprax/mpiprogram.err)

)

Peter Praxmarer AustrianGrid Workshop 2004 – p.30/75

globus_gram_client - API

Developer’s interface for job submission

Peter Praxmarer AustrianGrid Workshop 2004 – p.31/75

GRAM: Submitting jobs - Basics

1. Activate the GLOBUS_GRAM_CLIENT_MODULE

2. Create a client callback using
globus_gram_client_callback_allow()

3. Request a job being executed using
globus_gram_client_job_request()

4. Destroy the client callback using
globus_gram_client_callback_disallow()

5. Deactivate the GLOBUS_GRAM_CLIENT_MODULE

Peter Praxmarer AustrianGrid Workshop 2004 – p.32/75

globus_gram_client - API

globus gram client job request() Submit a job to a
remote resource

Resource manager contact string (in)
hostname[:port][/service][:subject]
hostname: required
port: defaults to 2119
service: defaults to jobmanager
subject - security subject name of the gatekeeper
(e.g. returned by grid-cert-info -subject
-f /etc/grid-security/hostcert.pem)

RSL string (in)
callback contact string (in); previously created by
calling globus_gram_client_job_request()

job contact string (out)

Peter Praxmarer AustrianGrid Workshop 2004 – p.33/75

Job Contact String

Returned by globus_gram_client_job_request()

Identifies the job

Is used by subsequent globus_gram_client_*()
function calls

The job contact string can be passed between
processes, even on different machines

Peter Praxmarer AustrianGrid Workshop 2004 – p.34/75

More GRAM functions

globus gram client job status() Check the status of the job
(one of PENDING, ACTIVE, FAILED, DONE); Status
can also be tracked through callbacks!

globus gram client job cancel() Cancel/kill a pending or active
job

Others Not discussed here! See
http://www.globus.org/gram/client/function_reference.html

Peter Praxmarer AustrianGrid Workshop 2004 – p.35/75

GRAM Example

GlobusGramClientExample.cc

Allow gram client callbacks

Submit the job, registering a callback function

Track state changes using the registered callback
function

Peter Praxmarer AustrianGrid Workshop 2004 – p.36/75

Resource Management APIs

globus_rsl

globus_gram_client

globus_gram_myjob

globus_duroc_control

globus_duroc_runtime

Peter Praxmarer AustrianGrid Workshop 2004 – p.37/75

Data Management

Data transfer and access
GASS Simple, multi-protocal file transfer tools;

integrated with GRAM
GridFTP Enhanced FTP protocol

Data replication and management
Replica Catalog Provides a catalog service for keeping

track of replicated datasets
Replica Management Provides services for creating and

managing replicated datasets
Not further discussed here!

Peter Praxmarer AustrianGrid Workshop 2004 – p.38/75

Global Access to Secondary Storage

Short: GASS

Used by GRAM for:
File staging:

Pull executables from remote location
Move stdin/stdout/stderr from/to a remote location

Provides:
GASS file access API
Remote cache management utility
API to implement special behavior

Most effectively used for ’small’ files

Peter Praxmarer AustrianGrid Workshop 2004 – p.39/75

GASS-APIs

Globus GASS File Access Wraps the basic Unix file
operations

GASS Client API Is used to make get and put requests to ftp
and x-gass servers.

GASS Server-EZ API Is used to construct a server that can
service get and put request made by the GASS client
API using x-gass URLs.

GASS Server API Same as Server-EZ but low-level

GASS Cache Management API The GASS cache management
API defines calls for manipulating a local file cache.

Peter Praxmarer AustrianGrid Workshop 2004 – p.40/75

GASS and GRAM Interaction

Peter Praxmarer AustrianGrid Workshop 2004 – p.41/75

GASS - Example

GlobusGassServerGramSubmission.cc

Peter Praxmarer AustrianGrid Workshop 2004 – p.42/75

GridFTP: Characteristics

FTP protocol with various extensions:
GSI-based security
Stripped data transfer
Parallel data transfer
Partial file transfer
3rd party transfer
Automatic/manual TCP buffer setting

→ Aims at high-performance data transfer for large
datasets

Peter Praxmarer AustrianGrid Workshop 2004 – p.43/75

GridFTP APIs

globus ftp control Provides access to low-level GridFTP
control and data channel operations

globus ftp client Provides typical client operations (get, put,
...)

globus gass copy Convenience API for managing multiple
data transfers using GridFTP, HTTP, local file, and
memory operations

Peter Praxmarer AustrianGrid Workshop 2004 – p.44/75

GridFTP: Tools

globus-url-copy Copies a source URL to a destination
URL

Valid protocols are http, https, FTP, gsiftp, and file
Uses the globus_gass_copy API.
Example usage:
globus-url-copy file:///tmp/file1
gsiftp://hydra/tmp/file2

Peter Praxmarer AustrianGrid Workshop 2004 – p.45/75

GridFTP: Example

GlobusGridFTPClient.cc

Peter Praxmarer AustrianGrid Workshop 2004 – p.46/75

Common Runtime Components

Wraps various C libraries for portability
(GLOBUS_COMMON_MODULE)

globus_libc
globus_thread
globus_list
globus_fifo
globus_hashtable

Peter Praxmarer AustrianGrid Workshop 2004 – p.47/75

Security: Grid Security Infrastructure

Public Key Infrastructure (PKI)
Certificate Authorities (CAs)
Certificates

SSL for authentication and message protection

Proxies and delegation for secure single Sign-on

Programmed using the Generic Security Services API
(GSS-API)

Peter Praxmarer AustrianGrid Workshop 2004 – p.48/75

Security: Public Key Infrastructure

Asymmetric encryption:
Each entity has a public and a private key
The private key is only known to the entity
Allows encryption
Allows authentication

Public key is encapsulated in a X.509 certificate

Peter Praxmarer AustrianGrid Workshop 2004 – p.49/75

PKI: Certificates

Binds a public key to a name

Is signed by a trusted party

(Thus the certificate contains at least Name, Issuer, Public

Key, and Signature)

Peter Praxmarer AustrianGrid Workshop 2004 – p.50/75

PKI: Certificate Authorities

Small set of trusted entities

Exists only to sign user certificates

CA signs it’s own certificate which is then is distributed
in a trusted manner.

→ Public Key from CA is used to verify other certificates

Peter Praxmarer AustrianGrid Workshop 2004 – p.51/75

PKI: Requesting a Certificate

1. grid-cert-request generates a key pair

2. The private key is stored encrypted with a pass phrase

3. The public key is put into a certificate request

4. The certificate request is sent to the CA

5. The CA verifies the request (Is the name unique with
respect to the CA?, Is the name stored in the certificate
the real name of the user?, ...)

6. The CA signs the certificate request and issues a
certificate for the user

Peter Praxmarer AustrianGrid Workshop 2004 – p.52/75

GSI: Tools (1)

grid-cert-request Request a user certificate, host certificate,
or ldap certificate

grid-cert-info Get certificate information:

-all

-subject

-issuer

-startdate

-enddate

-help

Peter Praxmarer AustrianGrid Workshop 2004 – p.53/75

GSI: Tools (2)

grid-proxy-init Creates a user-proxy that
is used for authentication with other resources
has limited validity
’acts on behalf of the user’

→ User’s private key is not exposed after proxy has
been signed

grid-proxy-info Displays proxy details

grid-proxy-destroy Destroys the user-proxy previously
created by grid-proxy-init

Peter Praxmarer AustrianGrid Workshop 2004 – p.54/75

GSI: Files (1)

/etc/grid-security
hostcert.pem server certificate (used for authentication

with gatekeeper, gsiftp)
hostkey.pem server’s private key
grid-mapfile maps grid subjects to local user accounts

/etc/grid-security/certificates
CA certificates CAs that we trust
ca-signing-policy.conf defines the subject names that can

be signed by each CA

Peter Praxmarer AustrianGrid Workshop 2004 – p.55/75

GSI: Files (2)

$HOME/.globus
usercert.pem User’s certificate
userkey.pem User’s private key (encrypted by a

passphrase)

/tmp
Proxy file(s) Temporary file(s) containing the

unencrypted proxy private key and certificate; valid
only for a ’short’ period

Peter Praxmarer AustrianGrid Workshop 2004 – p.56/75

GSI: Delegation

Delegation Remote creation of a proxy credential
1. New key pair is generated remotely on server
2. Proxy certificate + public key sent to client
3. Client signs the proxy certificate
4. Server stores it in /tmp

Types Various types
Full proxy
Limited proxy
Restricted proxy

Peter Praxmarer AustrianGrid Workshop 2004 – p.57/75

GSI Programming: GSS-API

The Generic Security Service API is the IETF draft for
adding authentication, delegation, message integrity,
and message confidentiality to apps

Seperates security from communication

Globus Toolkit components use the GSS-API

But GSS-API is not easy to use: Thus GT 2 provides
the globus_gss_assist module, which is a wrapper
around GSS-API. It’s use is demonstrated later.

Peter Praxmarer AustrianGrid Workshop 2004 – p.58/75

Summary: Grid Security Infrastructure

Lies at the heart of all Globus Components

Uses a Public Key Infrastructure

Provides a secured TCP connection using SSL

Can be programmed using the GSS-API or the
globus_gss_assist module.

Peter Praxmarer AustrianGrid Workshop 2004 – p.59/75

Globus IO

Provides I/O for:
Files
TCP
UDP

Integrates GSI-Security

Blocking/Nonblocking

Peter Praxmarer AustrianGrid Workshop 2004 – p.60/75

Globus IO: Basic Steps(1)

1. Activate the GLOBUS_IO_MODULE

2. Initialize used data structures: globus_io_attr_t,
using globus_io_tcpattr_init(),
globus_io_udpattr_init(), or
globus_io_fileattr_init()

3. Create the globus_io_handle_t by calling one of
globus_io_file_open(),
globus_io_tcp_create_listener(),
globus_io_tcp_accept(),
globus_io_tcp_connect(),
globus_io_udp_bind(), or use the non-blocking
calls

Peter Praxmarer AustrianGrid Workshop 2004 – p.61/75

Globus IO: Basic Steps(2)

4. Use the created handle by calling one of
globus_io_[register_]read(),
globus_io_[register_]write(), ...

5. Close the handle with globus_io_close(), free the
allocated memory for the previously initialized data
structures, using globus_io_tcpattr_destroy(),
globus_io_udpattr_destroy(), or
globus_io_fileattr_destroy()

Peter Praxmarer AustrianGrid Workshop 2004 – p.62/75

Globus IO: TCP Examples

GlobusTCPClientTestApp.cc

GlobusTCPServerTestApp.cc

Peter Praxmarer AustrianGrid Workshop 2004 – p.63/75

Information Services - Motivation

Repository containing answers to questions like:
What resources are available?
→ resource discovery

What is the ’state’ of the grid?
→ resource selection

How can the resource use be optimized?
→ application configuration and adaption

→ Metacomputing Directory Service (MDS)

Peter Praxmarer AustrianGrid Workshop 2004 – p.64/75

MDS: Characteristics

Provides uniform access to static and dynamic
information regarding system components

Basic information for configuration and adaption

Scalable

Decentralized maintainance

Peter Praxmarer AustrianGrid Workshop 2004 – p.65/75

Metacomputing Directory Service

Uses LDAP

Directory is represented by collection of LDAP servers

Updated by:
Information providers
Applications
Backend tools that generate info on demand

Information dynamically available to tools and
applications

Peter Praxmarer AustrianGrid Workshop 2004 – p.66/75

MDS: Architecture

Two main components:

Grid Resource Information Service (GRIS): Supplies
information about a specific resource
Grid Index Information Service (GIIS): Supplies
collection of information previously gathered from
multiple GRIS, or GIIS

Protocols:

Grid Resource Registration Protocol (GRRP)
Support information/resource discovery

Grid Resource Inquiry Protocol (GRIP)
Query resource description server for information
Query aggregate server for information
LDAP v3.0

Peter Praxmarer AustrianGrid Workshop 2004 – p.67/75

LDAP Overview

Lightweight Directory Access Protocol

IETF Standard

’Directory’: Listing of information about objects
arranged in some order that give details about each
object

’Lightweight’: Doesn’t support the full OSI protocol
stack as required by the original X.500 (DAP) standard;
uses the TCP/IP protocol stack instead

Organizes directory entries in a hierarchical name
space capable of supporting large amounts of
information

Peter Praxmarer AustrianGrid Workshop 2004 – p.68/75

Querying MDS

grid-info-search General purpose client
grid-info-search -h <host> -p <port> -b
<base> -T <timeout> [<filter>]
[<attributes>]

-x Anonymous access
Example:
grid-info-search -b
’Mds-Device-Group-name=processors,
Mds-Host-hn=hydra.gup.uni-linz.ac.at,
Mds-Vo-name=JKU,o=Grid’
Mds-Cpu-Total-count

Standard port is 2135

Peter Praxmarer AustrianGrid Workshop 2004 – p.69/75

Querying MDS from an application

MDS is accessed using the OpenLDAP client library

Provides functions for:
Connecting to server
Posing queries which return data structures
containing the search result
Functions for traversing these data structures

Peter Praxmarer AustrianGrid Workshop 2004 – p.70/75

Example

MDSClientExample.cc

Peter Praxmarer AustrianGrid Workshop 2004 – p.71/75

Outlook to GT 4 - OGSA

Open Grid Service Architecture

Service Orientation to virtualize resources

Built on GT2

Uses Web services
Standards-based framework for accessing network
applications; W3C standardization
WSDL: Web Services Description Language
SOAP: Simple Object Access Protocol (XML-based
RPC protocol)
UDDI: Universal Description, Discovery, and
Integration (Directory for Web services)

Peter Praxmarer AustrianGrid Workshop 2004 – p.72/75

Components in GT4

Peter Praxmarer AustrianGrid Workshop 2004 – p.73/75

New Acronyms

Security
CAS Community Authorization Service; Allows a VO to

express a policy regarding resources distributed
across a number of sites

Data Management
RFT Reliable File Transfer; The RFT service uses

standard SOAP messages over HTTP to submit and
manage a set of 3rd party GridFTP transfer and to
delete files using GridFTP.

Execution Management

Information Services

Common Runtime Components

Peter Praxmarer AustrianGrid Workshop 2004 – p.74/75

Links

http://www.globus.org

http://www.globus.org/developer/api-reference.html

Peter Praxmarer AustrianGrid Workshop 2004 – p.75/75

	Agenda
	Grid Computing: Basic Definitions
	Why Grid Computing?
	Grid Middleware: The Globus Project
	The Globus Toolkit
	Globus Toolkit 2 Components
	Globus Modules
	GT2 Development Basics(1)
	GT2 Development Basics(2)
	GT2 Development Basics(3)
	Globus Module Activation(1)
	Globus Module Activation(2)
	Globus Error Reporting
	Resource Management: GRAM
	GRAM Components
	Resource Specification Language (RSL)
	Constraints: ``&''
	Disjunction: ``$mid $''
	RSL Attributes(1)
	RSL Attributes(2)
	RSL Attributes(3)
	RSL Attributes(4)
	RSL Attributes(5)
	RSL Substitutions
	RSL Substitution: Example
	RSL: Predefined Substitutions
	globus_rsl
	GRAM: Tools
	GRAM: Submitting a MPI Job
	globus_gram_client - API
	GRAM: Submitting jobs - Basics
	globus_gram_client - API
	Job Contact String
	More GRAM functions
	GRAM Example
	Resource Management APIs
	Data Management
	Global Access to Secondary Storage
	GASS-APIs
	GASS and GRAM Interaction
	GASS - Example
	GridFTP: Characteristics
	GridFTP APIs
	GridFTP: Tools
	GridFTP: Example
	Common Runtime Components
	Security: Grid Security Infrastructure
	Security: Public Key Infrastructure
	PKI: Certificates
	PKI: Certificate Authorities
	PKI: Requesting a Certificate
	GSI: Tools (1)
	GSI: Tools (2)
	GSI: Files (1)
	GSI: Files (2)
	GSI: Delegation
	GSI Programming: GSS-API
	Summary: Grid Security Infrastructure
	Globus IO
	Globus IO: Basic Steps(1)
	Globus IO: Basic Steps(2)
	Globus IO: TCP Examples
	Information Services - Motivation
	MDS: Characteristics
	Metacomputing Directory Service
	MDS: Architecture
	LDAP Overview
	Querying MDS
	Querying MDS from an application
	Example
	Outlook to GT 4 - OGSA
	Components in GT4
	New Acronyms
	Links

