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Grid Computing: Basic Definitions

Grid “A computational grid is a hardware and software
infrastructure that provides dependable, consistent,
pervasive, and inexpensive access to highend
computational capabilities.” (Ian Foster, 1999)

Virtual Organization Is a
Set of entities (persons, organizations)
Sharing their resources
Temporarily
Controlled
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Why Grid Computing?

Exploiting underutilized resources

Parallel CPU capacity

Virtual Organizations for collaboration

Access to special/additional resources

Reliability
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Grid Middleware: The Globus Project

Basic research in grid-related technologies

Development of the Globus Toolkit

Construction of Testbeds

→ Aims at providing a production-ready grid
middleware
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The Globus Toolkit

“Bag of services”

Layered Architecture:
Grid Fabric Layer Information hiding of basic OS services

(IO, libc, threads, ...)
Grid Services Layer Basic Grid services for resource

management, data management, information
services, and security

Application Toolkit Layer Specialized services for various
problem domains

Application Layer Grid applications using the services of
the underlying layers.
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Globus Toolkit 2 Components

Security (authentication, authorization, integrity,
confidentiality) → GSI

Remote process invocation/execution → GRAM

Data Management → GridFTP, GASS

Information Services → MDS

→ Encapsulated in so-called modules
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Globus Modules

A Globus module is a software unit encapsulating those
functions which logically belong together.

Five main components

Resource management
Data management
Information services
Security
Common Libraries
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GT2 Development Basics(1)

Flavors: The Globus Toolkit components can be
installed using different ’flavors’. Flavors define the

Compiler: gcc, vendorcc, mpicc
Architecture: 32, 64
Debug-Information
Threading: pthread, no-thread

e.g. gcc32dbgpthr

When compiling your own application NEVER mix
different flavors!! (e.g. gcc
-I/opt/globus/include/gcc32dbg
-L/opt/globus/lib myapp.c
-lglobus_common_gcc32dbgpthr)

→ use globus-makefile-header instead
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GT2 Development Basics(2)

globus-makefile-header: Prints all Globus relevant
paths and tools; should be included (and used) in the
project’s makefile

Example usage:

globus-makefile-header --flavor gcc64pthr
> globus makefile header.mk
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GT2 Development Basics(3)

Include the output in the project’s makefile:

# Project Makefile

include globus_makefile_header.mk

all: myapp

%.o: %.cc

$(GLOBUS_CXX) -g -c -I. $(GLOBUS_CPPFLAGS) $< -o $@

myapp: myapp.o

$(GLOBUS_CXX) -g -o $@ $(GLOBUS_CPPFLAGS) \

$(GLOBUS_LDFLAGS) $ˆ $(GLOBUS_PKG_LIBS)
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Globus Module Activation(1)

Before a Globus-Module can be used it needs to be
activated globus_module_activate()

After it’s use it should be deactivated
globus_module_deactivate()

Dependent modules are automatically activated

Modules can be loaded more than once
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Globus Module Activation(2)

Typical pattern:
#include ‘‘globus_common.h’’

#include ‘‘globus_io.h’’

int main() {

// ...

globus_module_activate(GLOBUS_IO_MODULE);

// ... (use)

globus_module_deactivate(GLOBUS_IO_MODULE);

// ...

}
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Globus Error Reporting

Globus functions typically return a globus_result_t
object

On success: GLOBUS_SUCCESS

Otherwise the error can be printed using the functions:
globus error get() Takes a globus_result_t

structure and returns a globus_object_t* object.
globus object printable to string() Takes a

globus_object_t* and returns a zero-terminated
C-string
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Resource Management: GRAM

Grid Resource Allocation Management (GRAM)

Resource Specification Language (RSL) is used to
communicate requirements

GRAM provides remote invocation
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GRAM Components

Peter Praxmarer AustrianGrid Workshop 2004 – p.16/75



Resource Specification Language (RSL)

Common language for specifying a jobs needs

Requirements are specified by a conjunction of
(key=value) pairs

&(executable="/bin/ls")
(count=4)
(arguments="-la")

Basic form of each pair: (attribute op value [
value ...])

Operators (op): <,<=,=, >=, >, ! =

GRAM understands a well-defined set of attributes

Unknown attributes are passed through
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Constraints: “&”

“Create 5-10 instances of myprog, each on a machine
with at least 64 MB memory that I can use for 4 hours”

Can be expressed using:

&(count>=5)(count<=10)
(max_time=240)(memory>=64)
(executable=myprog)
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Disjunction: “|”

“Create 5 instances of myprog, each on a machine with
at least 64 MB of memory, or 10 instances on machines
with at least 32 MB of memory”

Can be expressed using:

&(executable=myprog)
(|(&(count=5)(memory>=64))
(&(count=10)(memory>=32))

)
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RSL Attributes(1)

(executable=string) Program to execute

(directory=string) Current/working directory

(arguments=arg1 arg2 arg3 ...) Argument list

(environment=(E1=v1)(E2=v2) ...) Environment
variable list

(stdin=string) Stdin for the program; Can be a file
path or an URL

(stdout=string) Stdout for the program; Can be a file
path or an URL

(stderr=string) Stderr for the program; Can be a file
path or an URL
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RSL Attributes(2)

(count=integer) Number of processes to run

(hostCount=integer) Number of nodes to distribute
the ’count’ processes across

(project=string) Project against which to charge

(queue=string) Queue into which to submit the job

(maxTime=integer) Maximum wall clock or CPU
runtime (scheduler’s choice) in minutes

(maxWallTime=integer) Maximum wall clock runtime in
minutes
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RSL Attributes(3)

(maxMemory=integer) Maximum amount of memory for
each process in megabytes

(minMemory=integer) Minimum amount of memory for
each process in megabytes

(jobType=value) Values are:
mpi: Job is an mpi-program, thus it is started using
mpirun -np <count>

single: Only run a single instance of the program,
and let the program start the other <count>-1
processes
multiple: Start <count> instances of the program
using the appropriate schuduler mechanism
condor: Start <count> Condor processes running in
“standard universe”
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RSL Attributes(4)

(gramMyjob=value) Defines how the
globus_gram_myjob library will operate on the
<count> processes:
collective Treat all <count> processes as part of a

single job
independent Treat each of the <count> processes as

an independent uniprocessor job

(dryRun=true) Do not actually run the job
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RSL Attributes(5)

(save state=yes) Jobmanager (should) save the job
state to disc, in order to recover after a jobmanager’s
crash

(two phase=integer) Implement a two-phase commit
for job submission and completion; time out after <int>
seconds

(restart=<old jobmanager contact>) Start a new
jobmanager but instead of submitting a new job, start
watching over an existing job

(std[out|err] position=integer) Specified as part
of a job restart

Restart file streaming from this byte
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RSL Substitutions

RSL supports simple variable substitutions

Defined as a list of pairs:
(rslSubstitution=(SUBST1 val1)(SUBST2 val2))

Applied by $(SUBST)

Processing order:
1. Within scope, processed left-to-right
2. Outer scope is processed before inner scope
3. Variable definition can refer previously defined

variables

Peter Praxmarer AustrianGrid Workshop 2004 – p.25/75



RSL Substitution: Example

This
&(rslSubstitution=(URLBASE ‘‘ftp://whereever’’))

(rslSubstitution=(URLDIR $(URLBASE)/dir))

(executable=$(URLDIR)/executable)

is equivalent to
&(executable=ftp://whereever/dir/executable)
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RSL: Predefined Substitutions

GLOBUS_HOST_MANUFACTURER

GLOBUS_HOST_CPUTYPE

GLOBUS_HOST_OSNAME

GLOBUS_HOST_OSVERSION

GLOBUS_LOCATION

HOME

LOGNAME

GLOBUS_ID
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globus_rsl

Functions for manipulating RSL expressions
Parse a RSL into a data structure
Manipulate it
Unparse the data structure into a string
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GRAM: Tools

globus-job-run Submits a job to a gatekeeper.
e.g. globus-job-run
hydra.gup.uni-linz.ac.at /bin/hostname

Lots of options
Dump the RSL string with -dumprsl

globusrun Takes a RSL expression and submits it to the
specified resource

globusrun -r hydra.gup.uni-linz.ac.at
’&(executable=/̈bin/hostname)̈’

globusrun -r hydra.gup.uni-linz.ac.at
-f job.rsl
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GRAM: Submitting a MPI Job

+
( &(resourceManagerContact="hydra")
(count=8)
(maxtime=60)
(jobtype=mpi)
(label="subjob 0")
(environment=(GLOBUS_DUROC_SUBJOB_INDEX 0)
(LD_LIBRARY_PATH /opt/globus/lib))

(directory=/home/guppy/pprax)
(executable=/home/guppy/pprax/mpiprogram)
(stdout=/home/guppy/pprax/mpiprogram.out)
(stderr=/home/guppy/pprax/mpiprogram.err)

)

Peter Praxmarer AustrianGrid Workshop 2004 – p.30/75



globus_gram_client - API

Developer’s interface for job submission
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GRAM: Submitting jobs - Basics

1. Activate the GLOBUS_GRAM_CLIENT_MODULE

2. Create a client callback using
globus_gram_client_callback_allow()

3. Request a job being executed using
globus_gram_client_job_request()

4. Destroy the client callback using
globus_gram_client_callback_disallow()

5. Deactivate the GLOBUS_GRAM_CLIENT_MODULE
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globus_gram_client - API

globus gram client job request() Submit a job to a
remote resource

Resource manager contact string (in)
hostname[:port][/service][:subject]
hostname: required
port: defaults to 2119
service: defaults to jobmanager
subject - security subject name of the gatekeeper
(e.g. returned by grid-cert-info -subject
-f /etc/grid-security/hostcert.pem)

RSL string (in)
callback contact string (in); previously created by
calling globus_gram_client_job_request()

job contact string (out)
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Job Contact String

Returned by globus_gram_client_job_request()

Identifies the job

Is used by subsequent globus_gram_client_*()
function calls

The job contact string can be passed between
processes, even on different machines
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More GRAM functions

globus gram client job status() Check the status of the job
(one of PENDING, ACTIVE, FAILED, DONE); Status
can also be tracked through callbacks!

globus gram client job cancel() Cancel/kill a pending or active
job

Others Not discussed here! See
http://www.globus.org/gram/client/function_reference.html
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GRAM Example

GlobusGramClientExample.cc

Allow gram client callbacks

Submit the job, registering a callback function

Track state changes using the registered callback
function
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Resource Management APIs

globus_rsl

globus_gram_client

globus_gram_myjob

globus_duroc_control

globus_duroc_runtime
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Data Management

Data transfer and access
GASS Simple, multi-protocal file transfer tools;

integrated with GRAM
GridFTP Enhanced FTP protocol

Data replication and management
Replica Catalog Provides a catalog service for keeping

track of replicated datasets
Replica Management Provides services for creating and

managing replicated datasets
Not further discussed here!
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Global Access to Secondary Storage

Short: GASS

Used by GRAM for:
File staging:

Pull executables from remote location
Move stdin/stdout/stderr from/to a remote location

Provides:
GASS file access API
Remote cache management utility
API to implement special behavior

Most effectively used for ’small’ files
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GASS-APIs

Globus GASS File Access Wraps the basic Unix file
operations

GASS Client API Is used to make get and put requests to ftp
and x-gass servers.

GASS Server-EZ API Is used to construct a server that can
service get and put request made by the GASS client
API using x-gass URLs.

GASS Server API Same as Server-EZ but low-level

GASS Cache Management API The GASS cache management
API defines calls for manipulating a local file cache.
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GASS and GRAM Interaction
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GASS - Example

GlobusGassServerGramSubmission.cc
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GridFTP: Characteristics

FTP protocol with various extensions:
GSI-based security
Stripped data transfer
Parallel data transfer
Partial file transfer
3rd party transfer
Automatic/manual TCP buffer setting

→ Aims at high-performance data transfer for large
datasets
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GridFTP APIs

globus ftp control Provides access to low-level GridFTP
control and data channel operations

globus ftp client Provides typical client operations (get, put,
...)

globus gass copy Convenience API for managing multiple
data transfers using GridFTP, HTTP, local file, and
memory operations
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GridFTP: Tools

globus-url-copy Copies a source URL to a destination
URL

Valid protocols are http, https, FTP, gsiftp, and file
Uses the globus_gass_copy API.
Example usage:
globus-url-copy file:///tmp/file1
gsiftp://hydra/tmp/file2
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GridFTP: Example

GlobusGridFTPClient.cc
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Common Runtime Components

Wraps various C libraries for portability
(GLOBUS_COMMON_MODULE)

globus_libc
globus_thread
globus_list
globus_fifo
globus_hashtable
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Security: Grid Security Infrastructure

Public Key Infrastructure (PKI)
Certificate Authorities (CAs)
Certificates

SSL for authentication and message protection

Proxies and delegation for secure single Sign-on

Programmed using the Generic Security Services API
(GSS-API)
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Security: Public Key Infrastructure

Asymmetric encryption:
Each entity has a public and a private key
The private key is only known to the entity
Allows encryption
Allows authentication

Public key is encapsulated in a X.509 certificate
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PKI: Certificates

Binds a public key to a name

Is signed by a trusted party

(Thus the certificate contains at least Name, Issuer, Public

Key, and Signature)
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PKI: Certificate Authorities

Small set of trusted entities

Exists only to sign user certificates

CA signs it’s own certificate which is then is distributed
in a trusted manner.

→ Public Key from CA is used to verify other certificates
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PKI: Requesting a Certificate

1. grid-cert-request generates a key pair

2. The private key is stored encrypted with a pass phrase

3. The public key is put into a certificate request

4. The certificate request is sent to the CA

5. The CA verifies the request (Is the name unique with
respect to the CA?, Is the name stored in the certificate
the real name of the user?, ...)

6. The CA signs the certificate request and issues a
certificate for the user
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GSI: Tools (1)

grid-cert-request Request a user certificate, host certificate,
or ldap certificate

grid-cert-info Get certificate information:

-all

-subject

-issuer

-startdate

-enddate

-help
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GSI: Tools (2)

grid-proxy-init Creates a user-proxy that
is used for authentication with other resources
has limited validity
’acts on behalf of the user’

→ User’s private key is not exposed after proxy has
been signed

grid-proxy-info Displays proxy details

grid-proxy-destroy Destroys the user-proxy previously
created by grid-proxy-init
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GSI: Files (1)

/etc/grid-security
hostcert.pem server certificate (used for authentication

with gatekeeper, gsiftp)
hostkey.pem server’s private key
grid-mapfile maps grid subjects to local user accounts

/etc/grid-security/certificates
CA certificates CAs that we trust
ca-signing-policy.conf defines the subject names that can

be signed by each CA
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GSI: Files (2)

$HOME/.globus
usercert.pem User’s certificate
userkey.pem User’s private key (encrypted by a

passphrase)

/tmp
Proxy file(s) Temporary file(s) containing the

unencrypted proxy private key and certificate; valid
only for a ’short’ period
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GSI: Delegation

Delegation Remote creation of a proxy credential
1. New key pair is generated remotely on server
2. Proxy certificate + public key sent to client
3. Client signs the proxy certificate
4. Server stores it in /tmp

Types Various types
Full proxy
Limited proxy
Restricted proxy
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GSI Programming: GSS-API

The Generic Security Service API is the IETF draft for
adding authentication, delegation, message integrity,
and message confidentiality to apps

Seperates security from communication

Globus Toolkit components use the GSS-API

But GSS-API is not easy to use: Thus GT 2 provides
the globus_gss_assist module, which is a wrapper
around GSS-API. It’s use is demonstrated later.
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Summary: Grid Security Infrastructure

Lies at the heart of all Globus Components

Uses a Public Key Infrastructure

Provides a secured TCP connection using SSL

Can be programmed using the GSS-API or the
globus_gss_assist module.
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Globus IO

Provides I/O for:
Files
TCP
UDP

Integrates GSI-Security

Blocking/Nonblocking
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Globus IO: Basic Steps(1)

1. Activate the GLOBUS_IO_MODULE

2. Initialize used data structures: globus_io_attr_t,
using globus_io_tcpattr_init(),
globus_io_udpattr_init(), or
globus_io_fileattr_init()

3. Create the globus_io_handle_t by calling one of
globus_io_file_open(),
globus_io_tcp_create_listener(),
globus_io_tcp_accept(),
globus_io_tcp_connect(),
globus_io_udp_bind(), or use the non-blocking
calls
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Globus IO: Basic Steps(2)

4. Use the created handle by calling one of
globus_io_[register_]read(),
globus_io_[register_]write(), ...

5. Close the handle with globus_io_close(), free the
allocated memory for the previously initialized data
structures, using globus_io_tcpattr_destroy(),
globus_io_udpattr_destroy(), or
globus_io_fileattr_destroy()
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Globus IO: TCP Examples

GlobusTCPClientTestApp.cc

GlobusTCPServerTestApp.cc
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Information Services - Motivation

Repository containing answers to questions like:
What resources are available?
→ resource discovery

What is the ’state’ of the grid?
→ resource selection

How can the resource use be optimized?
→ application configuration and adaption

→ Metacomputing Directory Service (MDS)
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MDS: Characteristics

Provides uniform access to static and dynamic
information regarding system components

Basic information for configuration and adaption

Scalable

Decentralized maintainance
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Metacomputing Directory Service

Uses LDAP

Directory is represented by collection of LDAP servers

Updated by:
Information providers
Applications
Backend tools that generate info on demand

Information dynamically available to tools and
applications
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MDS: Architecture

Two main components:

Grid Resource Information Service (GRIS): Supplies
information about a specific resource
Grid Index Information Service (GIIS): Supplies
collection of information previously gathered from
multiple GRIS, or GIIS

Protocols:

Grid Resource Registration Protocol (GRRP)
Support information/resource discovery

Grid Resource Inquiry Protocol (GRIP)
Query resource description server for information
Query aggregate server for information
LDAP v3.0
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LDAP Overview

Lightweight Directory Access Protocol

IETF Standard

’Directory’: Listing of information about objects
arranged in some order that give details about each
object

’Lightweight’: Doesn’t support the full OSI protocol
stack as required by the original X.500 (DAP) standard;
uses the TCP/IP protocol stack instead

Organizes directory entries in a hierarchical name
space capable of supporting large amounts of
information
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Querying MDS

grid-info-search General purpose client
grid-info-search -h <host> -p <port> -b
<base> -T <timeout> [<filter>]
[<attributes>]

-x Anonymous access
Example:
grid-info-search -b
’Mds-Device-Group-name=processors,
Mds-Host-hn=hydra.gup.uni-linz.ac.at,
Mds-Vo-name=JKU,o=Grid’
Mds-Cpu-Total-count

Standard port is 2135
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Querying MDS from an application

MDS is accessed using the OpenLDAP client library

Provides functions for:
Connecting to server
Posing queries which return data structures
containing the search result
Functions for traversing these data structures
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Example

MDSClientExample.cc
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Outlook to GT 4 - OGSA

Open Grid Service Architecture

Service Orientation to virtualize resources

Built on GT2

Uses Web services
Standards-based framework for accessing network
applications; W3C standardization
WSDL: Web Services Description Language
SOAP: Simple Object Access Protocol (XML-based
RPC protocol)
UDDI: Universal Description, Discovery, and
Integration (Directory for Web services)
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Components in GT4
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New Acronyms

Security
CAS Community Authorization Service; Allows a VO to

express a policy regarding resources distributed
across a number of sites

Data Management
RFT Reliable File Transfer; The RFT service uses

standard SOAP messages over HTTP to submit and
manage a set of 3rd party GridFTP transfer and to
delete files using GridFTP.

Execution Management

Information Services

Common Runtime Components
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Links

http://www.globus.org

http://www.globus.org/developer/api-reference.html
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