W & Z boson production: theory update

Pavel Nadolsky

Argonne National Laboratory

Total cross sections upcoming CTEQ contribution to Tev4LHC workshop

□ Rapidity distributions, charge asymmetry

□ Nonperturbative contributions to q_T resummation A. Konychev, P. N., hep-ph/0505xxx

For additional details, see also hep-ph/0412146

Precision computation of Tevatron W and Z cross sections relies on understanding of

□ NNLO QCD and NLO EW perturbative corrections

□ multiple correlated factors of diverse nature:

- O theoretical and experimental
- O perturbative and nonperturbative
- O rigorous and practical
- objective and subjective

Total W and Z cross sections

D Monitors of the beam and parton luminosity at future colliders (Dittmar, Pauss, Zurcher; Khoze, Martin, Orava, Ryskin; Giele, Keller)

Total cross sections: NNLO QCD corrections

$$\sigma_{tot}(p\bar{p} \to V) = \sum_{partons} \int dx_1 dx_2 f_{a/p}(x_1) f_{b/\bar{p}}(x_2) \hat{\sigma}_{tot}(ab \to V)$$

□ NNLO hard cross section $\hat{\sigma}_{tot}(ab \rightarrow V)$ (Hamberg, van Neerven, Matsuura, 1991; Harlander and Kilgore, 2002)

D Partial NNLO results for parton distributions $f_{a/p}(x)$

- □ Scale dependence of order 1%
- NNLO K-factor is about 1.04 at the Tevatron and 0.98 at the LHC (MRST'03)

Cancellation of PDF uncertainties in $\sigma_{tot}(Z)/\sigma_{tot}(W)$

(Huston, P. N., Pumplin, Stump, Tung, Yuan, 2004)

 In spite of different quark flavors, a measurement of $\sigma(Z)$ will constrain $\sigma(W)$ (and possibly other quark-dominated cross sections)!

Differences between various NLO predictions for σ_{tot} arise not only from higher-order corrections

- Selection & weighting of data in the fit
- Parametric form of PDFs at $\mu = \mu_0$
- Definition of α_s at (N)NLO
- Assumptions about sea flavor symmetries
- Treatment of heavy flavors
- Implementation of electroweak corrections
 - acceptance, lepton ID

$\sigma_{tot}(W)$ and $\sigma_{tot}(Z)$: standardization of theory predictions (in progress)

Collider/	Cross section (pb)	CTEQ6M	MRST
program			2002(NLO)
Tevatron	$\sigma(W ightarrow \ell u)$ (SigmaTot1)	2526	2548
$(\sqrt{s} = 1.96$ TeV)	$\sigma(W)$ at Q=80.423 GeV	23773	23988
wttot	$\sigma(W) \cdot 0.1068$	2539	2562
	$\sigma(W) \cdot 0.1084$	2577	2601
ResBos	$\sigma(W o \ell u)$	2588 ± 6	2606 ± 6
MRST'02 paper	$\sigma(W)$ ·0.1068		2600 (1.4% above WTTOT)
LHC	$\sigma(W^+ ightarrow \ell u)$ (SigmaTot1)	11525	11444
$(\sqrt{s} = 14$ TeV)	$\sigma(W^- ightarrow \ell u)$ (SigmaTot1)	8497	8500
wttot	$\sigma(W o \ell u)$ (SigmaTot1)	20022	19944
	$\sigma(W)$ at Q=80.423 GeV	188549	187885
	$\sigma(W) \cdot 0.1068$	20137	20066
	$\sigma(W) \cdot 0.1084$	20439	20367
ResBos	$\sigma(W^+ o \ell u)$	11899 ± 43	11891 ± 43
	$\sigma(W^- o \ell u)$	8717 ± 29	8799 ± 29
	$\sigma(W o \ell u)$	20616±52	20690 ±52
MRST'02 paper	$\sigma(W)$ ·0.1068		20400 (1.6% above WTTOT)

The "correct" standard candle observable

" $\sigma_{tot}(Z)$ " is a theoretical construct to be derived from experimental data for $p\bar{p} \to (\gamma^*, Z \to e^+e^-)X$ and $p\bar{p} \to (\gamma^*, Z \to \mu^+\mu^-)X$

Z boson decay can be described at various levels of sophistication

- \Box narrow Z width approximation (MRST)
- □ effective Born approximation (ResBos, MCFM,...)
- □ final-state NLO QED corrections (ResBos-A)
- □ inclusive NLO-EW total cross section

O + γ^*, Z interference

- □ NLO-EW + acceptance and lepton ID cuts (ZGRAD)
 - O + dependence on m_e and m_μ
- \Box + effects of detection, triggering, ...

Which level is the most suitable for presentation of a universally used standard-candle quantity?

Rapidity distributions and charge asymmetry

NNLO rapidity distributions at the Tevatron

(Anastasiou, Dixon, Melnikov, Petriello, 2004)

Tiny scale dependence (< 1%)
 For |y| < 2, NNLO leads to a uniform enhancement

 $\sigma_{NNLO} \approx K \cdot \sigma_{NLO}$

 $K(Z) \sim 3 - 5\%, K(W) \sim 2.5 - 4\%$

□ Larger corrections in forward regions

Charge asymmetry: CDF Run-2 vs. CTEQ6.1 and ResBos

 $\gg p_{Te}$ cut introduces dependence of $A_{ch}(y_e)$ on QCD corrections

Nonperturbative contributions in transverse momentum

resummation

Anton Konychev, P. N., hep-ph/0505xxx

A W boson acquires $q_T \neq 0$ by recoiling against perturbative or nonperturbative QCD radiation

The peak of $d\sigma/dq_T$ moves by up to ~ 500 MeV depending on the nonperturbative model (large effect compared to the targeted δM_W ~ 30 MeV)

Behavior of nonpert. contributions and their uncertainties are studied within a global analysis of q_T distributions of Drell-Yan pairs and Z bosons in the Collins-Soper-Sterman resummation formalism \Rightarrow today's talk; \Rightarrow non-trivial variations in $d\sigma/dq_T$ at $x < 10^{-2}$ will be neglected

bW(b,Q) in Z boson production

In the CSS formalism, the small- q_T cross section is given by a Fourier-Bessel transform of an impact parameter $b\widetilde{W}(b,Q)$ in impact parameter (b) space

□ 0.5 ≤ b ≤ 1.5−2 GeV⁻¹ : higher-order terms in α_s and b^p important; contributes some variations in dσ/dq_T at q_T ≤ 10 GeV
 □ b ≥ 1.5 − 2 GeV⁻¹ : terra incognita; tiny contributions

The puzzling behavior of nonperturbative contributions

On one hand:

□ The nonperturbative " k_T -smearing" function $S_{NP}(b, Q)$ is universal in Drell-Yan-like processes and SIDIS (Collins, Soper, 1981; CSS, 1985; Collins, Metz, 2004)

□ Renormalon analysis (Korchemsky, Sterman) predicts that the "genuine" $S_{NP}(b, Q)$ is approximately quadratic in b and linear in ln Q:

 $S_{NP}(b,Q) \approx b^2 \{a_1 + a_2 \ln Q\} \oplus \text{ smaller corrections}$ A lattice QCD estimate gives $a_2 = 0.19^{+0.11}_{-0.1} \text{ GeV}^2$ (Tafat)

On the other hand:

 \Box A previous global q_T fit (Brock, Landry, P. N., Yuan, 2002) finds

$$S_{NP}(b,Q) = b^2 \left[g_1 + g_2 \ln \left(\frac{Q}{3.2 \text{ GeV}} \right) + g_1 g_3 \ln (100 x_A x_B) \right],$$

with $g_1 = 0.21^{+0.01}_{-0.01} \text{ GeV}^2, g_2 = 0.68^{+0.01}_{-0.02} \text{ GeV}^2, g_3 = -0.6^{+0.05}_{-0.04}$

- □ parametrizations with linear terms in *b* or $g_3 = 0$ fail spectacularly $(\chi^2/d.o.f. > 3)$
- \Box some tension between experiments ($\chi^2/d.o.f. = 176/119 \sim 1.48$)
- $\Box g_2 = 0.68^{+0.01}_{-0.02} \text{ GeV}^2$ does not agree with $a_2 = 0.19^{+0.11}_{-0.1} \text{ GeV}^2$
- \Box the fit suggests intrinsic $\langle k_T^2 \rangle = 2g(Q) \approx 5.4 \text{ GeV}^2$ at $Q = M_Z$
- $\Box \langle k_T^2 \rangle \approx 1.6 \text{ GeV}^2$ at $Q = M_Z$ in other models for large-*b* continuation of perturbative terms (*Qiu, Zhang; Kulezsa, Sterman, Vogelsang*)

Does S_{NP}^{BLNY} inadvertently include a sizable perturbative component?

 $W_{pert}(b,Q)$ at large b: the b_* prescription (Collins, Soper, 1982; CSS, 1985)

$$\widetilde{W}(b,Q) = \widetilde{W}_{pert}(b_*,Q)e^{-\mathcal{S}_{NP}(b,Q;b_{max})}$$

$$b_*(b, b_{max}) \equiv \frac{b}{(1+b^2/b_{max}^2)^{1/2}} = \begin{cases} b & \text{at} \quad b \ll b_{max} \\ b_{max} & \text{at} \quad b \gg b_{max} \end{cases}$$

$$egin{aligned} \widetilde{W}_{pert}(b_*,Q) &= \sum_j \sigma_0 e^{-\mathcal{S}_{pert}(b_*,Q)} \ & imes \quad \left[\mathcal{C}_{j/a}\otimes f_{a/A}
ight](x_A,b_*,\mu_F(b_*)) \left[\mathcal{C}_{\overline{j}/b}\otimes f_{b/B}
ight](x_B,b_*,\mu_F(b_*)) \end{aligned}$$

The arbitrary scale μ_F in the PDF's $f_{a/A}(x_A, \mu_F)$ is usually set equal to b_0/b_* to avoid $|\ln(\mu_F b_*/b_0)| \gg 1$ in $C_{j/a}(x_A, b_*, \mu_F)$ (here $b_0 = const \approx 1.12$)

- □ b_{max} cannot exceed $b_0/Q_{ini} \approx 1 \text{ GeV}^{-1}$ ($Q_{ini} \approx 1 \text{ GeV}$ is the initial PDF scale); $b_{max} = 0.5 \text{ GeV}^{-1}$ in the BLNY fit
- \square b_* anzatz modifies \widetilde{W}_{pert} in the transition region $b \sim 1 \text{ GeV}^{-1}$
- \Box compensated in part by phenomenological $S_{NP}(b,Q)$

- □ We would like to increase b_{max} above 1 GeV⁻¹ to reduce impact of b_* anzatz on \widetilde{W}_{pert} in the transition region
- \Box The PDF parametrization requires that $\mu_F \sim 1/b_* > 1 \text{ GeV}$
 - O unless the GRV PDFs are used
- □ Other parts of $\widetilde{W}_{pert}(b, Q)$ can be continued to $b > 1 \text{ GeV}^{-1}$ by using their fixed-order expressions
- \Box Solution: decouple μ_F from b_*

The "modified *b*_{*} prescription"

1. Take the original b_* prescription

$$\widetilde{W}(b,Q) = \widetilde{W}_{pert}(b_*,Q)e^{-\mathcal{S}_{NP}(b,Q;b_{max})}$$

2. If $b_{max} < b_0/Q_{ini}$, choose $\mu_F = b_0/b_*(b, b_{max})$ (original b_* anzatz) 3. If $b_{max} > b_0/Q_{ini}$, choose $\mu_F = b_0/b_*(b, b_0/Q_{ini})$

Modified b_* prescription: factorization scale dependence

 \Box If $\mu_F \sim Q_{ini}$, large non-resummed logarithms appear at $b_* \gg b_0/Q_{ini}$

$$\mathcal{C}_{j/a}\left(x, \frac{b_*\mu_F}{b_0}\right) = \sum_{k,m} \left(\frac{\alpha_s}{\pi}\right)^k \left[P_{j/a}(x)\ln^m(\frac{b_*\mu_F}{b_0}) + \dots\right]$$

- □ should not create problems, because the region $b_* \gg b_0/Q_{ini}$ is exponentially suppressed by $e^{-S_{pert}(b_*,Q)-S_{NP}(b,Q)}$
 - O confirmed by a numerical calculation
 - ▷ our fits are made for $\mu_F = C_3/b'_*$, with $C_3 = b_0$ and $C_3 = 2b_0$; scale variations with C_3 are roughly independent from b_{max}

Properties of the modified b_* prescription

 \Box no new parameters (utilizes freedom in the choice of μ_F)

 \Box preserves continuity of $\widetilde{W}(b,Q)$ and its derivatives

☐ the balance of pert. and nonpert. contributions in W(b, Q) is smoothly changed by varying b_{max}

 \Box at $b_{max} \leq b_0/Q_{ini}$, reduces to the original b_* prescription

□ at $b_{max} \gg b_0/Q_{ini}$, is structurally and numerically close to the leadinglog extrapolation of $\widetilde{W}_{pert}(b,Q)$, such as that in the principal value resummation (Sterman; Kulesza, Sterman, Vogelsang...) Perturbative form factors $b\widetilde{W}^{pert}(b,Q)$ and $b\widetilde{W}^{pert}(b_*,Q)$ in the modified b_* prescription for the Tevatron Run-1 Z production

98 data points

□ Tevatron Run-1 Z boson production (CDF, D0)

- O $Q \approx M_Z$, $\sqrt{s} =$ 1.8TeV, $p_T <$ 10 GeV
- O sizable errors

□ Fixed-target Drell-Yan pair production (E288, E605, R209)

O $Q=5-18~{
m GeV}$, $p_T<1.4~{
m GeV}$

 \odot small statistical errors, incomplete systematical errors; 2 outlier points in E605 sample contribute $\delta\chi^2 \approx 25$

Nonperturbative function:

$$S_{NP}(b) = b^{2-\beta} \left[a_1 + a_2 \ln \left(\frac{Q}{3.2 \text{ GeV}} \right) + a_3 \ln (100 x_A x_B) \right],$$

where $\beta = 0$ (Gaussian form) or free; a_3 (here)= $g_1 g_3$ (BLNY)
Scan over $b_{max} = 0.5 - 2.5 \text{ GeV}^{-1}$

Summary of the results

- □ Increasing b_{max} up to $1 1.5 \text{ GeV}^{-1}$ improves the quality of the fit
 - $\bigcirc \chi^2$ and $|\mathcal{S}_{NP}(b,Q)|$ decrease
 - Best-fit $|a_3| \approx 0$
 - O Best-fit $\beta = -0.2$ (+0.3) in Drell-Yan (Z) experiments; correlated with normalizations of DY data; $\beta = 0$ in the next slides

□ The preferred $S_{NP}(b,Q)$ is close to a two-parameter Gaussian form, $S_{NP}(b,Q) \approx [a_1 + a_2 \ln (Q/3.2)] b^2$, with a_2 in excellent agreement with lattice QCD

□ Small, but non-zero, a₃ and β are needed because of high accuracy of E288 and E605 data

Modified b_* prescription: scan over b_{max}

Best fit: $b_{max} = 1.5 \text{ GeV}^{-1}$

ᅷ

Nonperturbative smearing *a*: independent scans of 5 experiments

 \Box The best-fit a(Q) shows quasi-linear dependence on $\ln(Q)$

□ Its energy derivative, $a_2 = da/d(\ln Q) \sim 0.18 \text{ GeV}^2$, agrees well with the lattice QCD estimate, $(a_2)_{lattice} = 0.19^{+0.11}_{-0.1} \text{ GeV}^2$

 $a(M_W)$: constraints from individual experiments

Obtained using a Lagrange multiplier method

 $\Box \text{ Errors are for} \\ \delta \chi^2_{tot} = 1$

A preliminary fit for $b_{max} = 1.2 \text{ GeV}^{-1}$: g(Q) = a(Q)

All data sets agree within errors; constraints from low-Q DY and Z Run-1 data are comparable

Z boson production in the Tevatron Runs 1 and 2

Remaining theory uncertainties may exceed experimental errors and are not fully understood

- □ Low-Q DY process
 - \bigcirc substantial dependence on factorization scales (e.g., C_3/b)
 - \bigcirc poor large- p_T matching
 - \bigcirc correlation between $S_{NP}(b,Q)$ and X-sec. normalizations
 - \triangleright correlations between $S_{NP}(b,Q)$ and PDF's
- \Box rapidity dependence, especially at $x < 10^{-2}$
- Further improvements in accuracy may require
 - □ NNLO resummed corrections
 - \square simultaneous fit of $S_{NP}(b,Q)$ and PDF's
 - a "proof-of-principle" fitting package is finished in CTEQ

Conclusions

- \Box Modifications in b_* prescription lead to better agreement with the data
- □ High quality of the obtained global q_T fits supports universality of k_T -dependent factorization in Drell-Yan-like processes
- Combination of 5 Drell-Yan and Tevatron experiments places stronger constraints on $S_{NP}(b, M_Z)$ than Run-1 Z boson production alone
- □ For $b_{max} \sim 1 1.5 \text{ GeV}^{-1}$, the data prefer a nearly Gaussian $S_{NP}(b, Q)$ with quasi-linear universal dependence on $\ln Q$ ($a_3 \approx 0$)
- □ The best-fit $a_2 \equiv dS_{NP}(b,Q)/d(\ln Q)$ agrees well with the renormalon analysis & lattice QCD
- □ Experimental uncertainties in $S_{NP}(b, Q)$ are estimated by applying Lagrange multiplier and Hessian matrix methods
- $\Box \ \mathcal{S}_{NP}(b,Q\,=\,M_W) pprox (0.85\pm 0.09)b^2$ for $b_{max}\,=\,1.5~{
 m GeV^{-1}}$ in Run-2

Backup slides

Charge lepton asymmetry

$$A_{ch}(y_e) \equiv \frac{\frac{d\sigma^{W^+}}{dy_e} - \frac{d\sigma^{W^-}}{dy_e}}{\frac{d\sigma^{W^+}}{dy_e} + \frac{d\sigma^{W^-}}{dy_e}}$$

 \Box related to the boson Born-level asymmetry (y_W =rapidity of W)

$$A_{ch}(y_W) \xrightarrow{y_W \to y_{max}} \frac{r(x_b) - r(x_a)}{r(x_b) + r(x_a)}, r(x) \equiv \frac{d(x, M_W)}{u(x, M_W)}$$

 \Box constrains the PDF ratio $d(x, M_W)/u(x, M_W)$ at $x \to 1$

 \Box In experimental analyses, a selection cut $p_{Te} > p_{Te}^{min}$ is imposed

The resummed cross section in theory

$$\frac{d\sigma_{AB\to VX}}{dQ^2 dy dq_T^2}\Big|_{q_T^2 \ll Q^2} = \sum_{\substack{a,b=g, \ u \ , \ d \ , \dots}} \int_0^\infty \frac{bdb}{2\pi} J_0(q_T b) \widetilde{W}_{ab}(b,Q,x_A,x_B)$$

$$\widetilde{W}_{ab}(b,Q,x_A,x_B) = |\mathcal{H}_{ab}|^2 e^{-\mathcal{S}(b,Q)} \overline{\mathcal{P}}_a(x_A,b) \overline{\mathcal{P}}_b(x_B,b)$$

= $\widetilde{W}_{LP}(b,Q,x_A,x_B) \otimes \widetilde{W}_{PS}(b,Q,x_A,x_B)$

 $S(b,Q), \overline{\mathcal{P}}_a(x,b)$ are universal in Drell-Yan-like processes Leading-power (LP) terms: do not vanish at $b \to 0$

$$\widetilde{W}_{LP}(b,Q) = \sum_{k=0}^{\infty} \left(\frac{\alpha_s}{\pi}\right)^k \sum_{m=0}^{2k} w_{km} \ln^m (Qb)$$

Power-suppressed (PS) terms are proportional to even powers of *b* (Korchemsky, Sterman; Tafat)

$$\widetilde{W}_{PS}(b,Q) \approx \exp\left[-\sum_{p=1}^{\infty} b^{2p} f_p(\ln Q)\right]; \quad f_p \sim \Lambda_{QCD}^{2p}$$

The resummed cross section in a global fit

$$\widetilde{W}_{ab}(b,Q) \equiv \widetilde{W}_{pert}(b,Q)e^{-\mathcal{S}_{NP}(b,Q)},$$

where

 \square at $b \lesssim 1 \ {
m GeV}^{-1}$,

$$\widetilde{W}_{pert}(b,Q) = \sum_{k=0}^{N} \left(\frac{\alpha_s}{\pi}\right)^k \sum_{m=0}^{2k} w_{km} \ln^m (Qb)$$

□ W_{pert}(b, Q) is continued in some fashion to b > 1 GeV⁻¹;
 □ e^{-S_{NP}} is the universal effective nonperturbative exponent to be found from the fit:

$$e^{-S_{NP}(b,Q)} \equiv \frac{\widetilde{W}}{\widetilde{W}_{pert}} = \frac{\widetilde{W}_{LP} \otimes \widetilde{W}_{PS}}{\widetilde{W}_{pert}}$$

□ if $\widetilde{W}_{pert} \approx \widetilde{W}_{LP}$ at all *b*, the fit should prefer $S_{NP}(b,Q) \approx -\ln\left[\widetilde{W}_{PS}(b,Q)\right] \approx b^2 f(\ln Q) \oplus \text{ small corrections}$

Choosing $b_{max} > 1.5 \text{ GeV}^{-1}$

- \Box Z production is described well for b_{max} up to 3 4 GeV⁻¹
- □ Description of low-Q Drell-Yan data worsens for $b_{max} > 1.5 \text{ GeV}^{-1}$ because of rapid variations in $\widetilde{W}_{pert}(b, Q)$ at $b = 1.5 - 3 \text{ GeV}^{-1}$

☐ The variations reflect absence of important higher-order logs $\sum \alpha_s^k \sum_m w_{km} \ln^m (Qb_{(*)})$

□ are not easily compensated by adjustments in $S_{NP}(b,Q)$

 $\Box b_{max} \sim 1 - 1.5 \text{ GeV}^{-1}$ is the optimal range

Experimental uncertainties: a(Q) at $Q = M_W$ and $Q = M_Z$ for $b_{max} = 1.2 \text{ GeV}^{-1}$

Obtained using a Lagrange multiplier method

A preliminary fit: g(Q) = a(Q)Translates into a variation $\approx \pm 50$ MeV in the peak of $d\sigma(W)/dq_T$