W Mass Overview and Future Needs

WZ Workshop 22 April 2005, Fermilab

Ashutosh Kotwal Fermilab / Duke University

- Scaling of uncertainties in Run 2
- Theoretical uncertainties
 - $p_T(W)$
 - PDFs
 - QED radiative corrections
- Summary

Motivation

Run 2a (2 fb⁻¹) expectation shown:

 $\Delta M_W \sim 40 \text{ MeV}$

 $\Delta m_{top} \sim 2.5 \text{ GeV}$

per experiment

can we do better?

Run 1 Results

- Tevatron (CDF and D0) Averages:
 - $M_W = 80.456 \pm 0.059 \text{ GeV}$ (19 MeV correlation)
 - $-\Gamma_{W} = 2.115 \pm 0.105 \text{ GeV}$ (26 MeV correlation)
 - Correlated uncertainties due to QED radiative corrections, parton distribution functions, and W mass/width inputs
- Joint $M_W \Gamma_W$ combination (no external W mass or width information used):
 - $M_W = 80.452 \pm 0.060 \text{ GeV}$
 - $-\Gamma_{\rm W} = 2.105 \pm 0.106 \,\,{\rm GeV}$
 - Correlation coefficient = -0.17
- Analysis of correlations and Tevatron combined results published (PRD70, 092008, 2004) by CDF, D0 & TeV-EWWG

Run 2 Extrapolation

- Scaling of ΔM_W and $\Delta \Gamma_W$ with integrated luminosity:
 - During 1987-1995 running period, integrated luminosity per collider experiment increased from 4 pb⁻¹ → 20 pb⁻¹
 → 110 pb⁻¹
 - ΔM_W reduced correspondingly: ~400 MeV → 150 MeV → 60 MeV, following $L^{-1/2}$ scaling
- Systematics constrained with collider data
- Continuation of this trend could lead to $\Delta M_W \sim 15$ MeV, $\Delta \Gamma_W \sim 25$ MeV with 2fb^{-1}

W and Z production at the Tevatron

Run 1 W Mass Systematic Uncertainties (MeV)

	CDF μ	CDF e	D0 e
W statistics	100	65	60
Lepton energy scale	85	75	56
Lepton resolution	20	25	19
Recoil model	35	37	35
pT(W)	20	15	15
Selection bias	18	-	12
Backgrounds	25	5	9
Parton dist. Functions	15	15	8
QED rad. Corrections	11	11	12
Γ(W)	10	10	10

(Correlated uncertainties)

Calorimeter Recoil Model and $p_T(W)$

- W mass measured using the location of the Jacobian edge in $p_T(l)$ or m_T distribution:
 - $M_{\rm T} = \sqrt{(2 p_{\rm T}^{\ l} p_{\rm T}^{\ v} (1 \cos \phi_{lv}))}$
 - Insensitive to $p_T(W)$ to first order
 - Reconstruction (by conservation of momentum) of p_T^{ν} sensitive to hadronic response and multiple interactions
- Recoil model tuned using $Z \rightarrow ll$ data
 - Need to understand W vs Z differences, due to
 - Presence of second lepton in Z events
 - Difference in rapidity distributions

Calorimeter Recoil Model and $p_T(W)$

- Advantage of $p_T(l)$: insensitive to hadronic response modelling, but need theoretical model of $p_T(W)$
 - Use precisely measured $p_T(Z \rightarrow ll)$
 - Need to understand W vs Z differences, due to theoretical differences in production (see Pavel's talk)
 - higher Q^2 for Z's
 - different quark PDFs in initial state
 - Non-perturbative QCD effects
 - Different QED ISR photons
 - difference in rapidity distributions and correlation between rapidity and p_T

Calorimeter Recoil Model and p_T(W)

- Relevant $p_T(W)$ range ~ 5-10 GeV
 - Large non-perturbative contribution
 - Potential for small difference between $p_T(W)$ and
 - $p_T(Z)$ due to charm-induced production (sc $\rightarrow W$)
 - Explored by Pavel Nadolsky et al, expected to be small

Parton Distribution Functions

- P_T^{*l*}, m_T not invariant under longitudinal boost given experimental rapidity cuts
- Forward rapidity coverage important to limit uncertainty from PDFs
 - W charge asymmetry measurement constrains *u/d* PDF ratio: statistics-limited
 - CDF measured in Run 1, new forward calorimeters in Run 2
 - D0 has forward coverage, charge measurement in Run 2
 - Use Forward W's in mass analysis
 - D0 did in Run 1, reduced PDF uncertainty (8 MeV vs 15 MeV)
- PDF fitters (MRST, CTEQ) now providing rigorous errors consensus on " 1σ " to emerge

PDFs

From Joey Huston's talk at W Mass Theory Workshop, Nov 2003

- Experimental errors
 - Hessian/Lagrange multiplier techniques designed to address estimate of these effects
 - question is what $\Delta\chi^2$ change best represents estimate of uncertainty
 - a strict fundamentalist would say $\Delta\chi^2$ of 1 (for 1 σ error)
 - CTEQ uses Δχ² of 100 (out of 2000) for something like a 90% CL limit
 - MRST uses $\Delta \chi^2$ of 50 for 90% CL limit

More details in Joey's talk – summary is that the 'metric' of this χ^2 is not trivial

but it matters: quoted W mass error is proportional to this metric

PDFs

From Oliver Stelzer-Chilton

Calculate W mass shift due to each of 40 PDF's from CTEQ error ensemble (relative to default PDF)

Useful to see which eigenvectors contribute most uncertainty to W mass. Can we relate this information to physics? What physical aspect of PDF's is most important?

PDFs

For example: u/d ratio is know to be relevant to W mass analsis

FIG. 5. The measured asymmetry, $A(|\eta_e|)$, is plotted and predictions from the CTEQ6.1M (solid) and MRST02 (dashed) PDFs are compared using a NLO RESBOS calculation. Both statistical and total (statistical + systematic) uncertainties are shown. The upper plot is for $25 \le E_T \le 35$ GeV. The lower plot is for $35 \le E_T \le 45$ GeV.

QED Radiative Corrections

- Improvements over Run 1:
 - Complete NLO QED calculations available (U. Baur *et. al.*) for single photon emission
 - 2-photon calculations performed (Carloni Calame *et. al.*, hepex/0303102; Placzek & Jadach, hep-ex/0302065), predict 2-8 MeV shift in W mass
 - Combined QCD+QED (FSR γ) generator for W and Z bosons available - RESBOS-A (Cao & Yuan)
- Uncertainty in QED corrections not expected to be a fundamental limitation

RESBOS-A

Cao & Yuan talk from W mass theory workshop, Nov 2003

Born

Resum+Born

ISR matters at the 5 MeV level (Ian Vollrath) & is different for W and Z Radiation off propagator matters at the 5 MeV level & is different for W and Z

Summary & Scaling of Theoretical Uncertainties

- p_T(W) uncertainty will most likely be limited by experimental issues of Z vs W data events
- QED technology continues to improve we (experimentalists) have to figure out how to incorporate all the details into the analysis
- PDF improvements not easy to come by what additional global data do we need to collect and analyse in the next few years?
 - How well can we do forward electrons in run 2? forward muons?