W/Z + Jets from Theory Challenging Our Tools

Stephen Mrenna

Computing Division Fermilab

CTEQ W/Z Workshop 2005

Stephen Mrenna (FNAL)

▲ ■ ▶ ■ のへで
CTEQ-W/Z 1 / 17

Understanding W+Jets is Critically Important

• Signature $Wb\bar{b} + X$ is common to unconfirmed Standard Model processes and many new physics processes

 $X \Rightarrow$ many boxes to study Many correlations to check

• we "know" that Standard Model top is there

 $\mathsf{Top} \equiv \mathsf{Data} - \mathsf{Not-Top}$

- As JES uncertainty is reduced (see CDF m_t), understanding of Not-Top sets δm_t
- Not-Top challenges our tools

Better tools = more challenging questions

Complicated Structure

 $t\bar{t}$ contamination in Njets=3,4 (1.0,1,3)

work on Mistags, Wbb, QCD

QCD, Mistags reducible

trust basic properties of B,D hadron decays, e.g. K mesons

<2 ≥ > <

 $\exists \rightarrow$

95% Confidence Level Expected/Measured Upper Limits (after final selections, with systematics, using Bayesian statistics)

			,
		s-channel	t-channel
Cut-Based	Electron	11.4/10.8	15.1/17.5
	Muon	13.0/15.2	18.1/13.0
	Combined	9.8/10.6	12.4/11.3
Decision Trees	Electron	6.9/7.9	9.3/13.8
	Muon	7.3/14.8	10.9/7.9
	Combined	4.5/8.3	6.4/8.1
Neural Networks	Electron	7.0/7.3	8.8/7.5
	Muon	7.0/8.7	9.5/7.4
	Combined	4.5/6.4	5.8/5.0

<ロト < 団ト < 団ト < 団ト

New Physics Warm-Up

- current state of single-Top is where we will be at the LHC with a few quality fb⁻¹
- the size of other NP signals
- it is a playground for new analysis techniques
- it challenges our tools

Not specific to NN analyses: may be more sensitive Many (11) Kinematic Variables

	Signal-Background Pairs			
	tb		tqb	
	Wbb	tŦ	Wbb	tĒ
Individual object kinematics				
$p_T(jetl_{tagged})$	\checkmark	\checkmark	\checkmark	_
$p_T(jetl_{untagged})$	_	—	\checkmark	\sim
$p_T(\text{jet2}_{untagged})$	—	_	_	\checkmark
$p_T(\text{jet1}_{nonbest})$	\sim	\sim	_	_
$p_T(\text{jet2}_{nonbest})$	\checkmark	\sim	_	-
Global event kinematics				
M_T (jet1, jet2)		_	_	_
$p_T(jet1, jet2)$	√.		√.	_
M(alljets)	\sim	\sim	\checkmark	\checkmark
$H_T(alljets)$	—	_	\sim	-
$M(alljets - jet1_{tagged})$	_	_	_	\checkmark
$H(alljets - jet1_{tagged})$	_	\checkmark	_	\checkmark
$H_T(\text{alljets} - \text{jet1}_{tagged})$	_	_	_	\checkmark
$p_T(alljets - jet1_{tagged})$	—		_	\checkmark
$M(alljets - jet_{best})$	_	\checkmark	_	_
$H(alljets - jet_{best})$	—	\checkmark	_	—
$H_T(alljets - jet_{best})$	—	\checkmark	-	-
$M(top_{tagged}) = M(W, jetl_{tagged})$	\checkmark	\sim	\sim	\checkmark
$M(top_{best}) = M(W, jet_{best})$	\checkmark	-	_	—
$\sqrt{\hat{s}}$	\sim	_	\checkmark	\checkmark
Angular variables				
$\Delta R(jet1, jet2)$	\checkmark	_	\checkmark	_
$Q(\text{lepton}) \times \eta(\text{jet1}_{\text{untagged}})$	_	_	\checkmark	\checkmark
$\cos(\text{lepton}, Q(\text{lepton}) \times z)_{top_{best}}$	\checkmark	_	_	_
$\cos(\text{lepton}, \text{jet1}_{untagged})_{top_{tagged}}$	_	_	\checkmark	_
cos(alljets, jet1 _{tagged}) _{alljets}	_	—	\checkmark	\checkmark
cos(alljets, jet _{nonbest}) _{all jets}	_	\checkmark	_	_

◆ ● ■ ● ■ 一 つ へ C CTEQ-W/Z 5 / 17

→ Ξ → < Ξ

Network Outputs

- How do we convince ourselves of a signal?
- How can we improve upon the search?

Method 2

Monte Carlo ratio R = (W + b - jets)/(W + jets)• Common factors cancel Measure W + jets (no b-tag) data(W + b - jets) = $R \times data(W + jets)$ Wcj/Wbb from Monte Carlo

Several R's

Tools

- Tree-Level (MadGraph, Alpgen, etc.)
- Parton-shower (Pythia, Herwig, etc.)
- NLO-Level (MCFM, etc.)
- Combinations of these

MLM Method

Parton shower and hadronization are essential for studying b-jets

- Parton shower W+Npartons but reject emissions that are too hard (i.e. each post-shower jet should have a pre-shower parton associated with it)
- Build up *inclusive* or *exclusive* samples (i.e. allow or disallow pure PS jets)

● *δR/R* ~25-30%

Heavy Flavor (HF)

- LEP, Run1 \Rightarrow PS underestimates HF PS inefficient in generating HF
 - $P_{qq}(z) = \frac{1}{2}(z^2 + (1-z)^2)$
 - no soft $(z \rightarrow 0)$ enhancement subleading log in PS
 - Use ME with $b\bar{b}$ explicit

Remove additional HF from PS

• *R* supplemented by phenomenological factor 1.5

<ロト < 団ト < 団ト < 団ト

\mathbf{v}	\sim		л.
<u> </u>		iec	ΣK

Graph	Cross Sect(fb)
Sum (Wbb)	8.934
Sum (Wjj)	1061.627
$ug \rightarrow e^+ v_e dg$	327.810
$u\bar{d}\rightarrow e^+v_egg$	257.060
$g\bar{d}\rightarrow e^+v_e\bar{u}g$	137.300
$\bar{d}g \rightarrow e^+ v_e \bar{u}g$	48.591
uū→e ⁺ v _e ūd	47.425
ud→e ⁺ v _e dd	36.644
$gu \rightarrow e^+ v_e dg$	34.445
ud→e ⁺ v _e uū	29.816

 $90 < M_{jj} < 110$ GeV, standard jets

 $R \times 1.5 = 1.3\%$ (MLM = 1.4%)

• $\langle R \rangle$ roughly the same

Many different topologies

Dominant ones not $q\bar{q}$

• again, no $z \rightarrow 0$ enhancement

Different topologies parton shower and hadronize differently

Many effects have to be modelled well to have a reliable prediction

MCFM Campbell and Ellis (see also Campbell & Huston)

Significant change in normalization and shapes $\text{LO} \Rightarrow \text{NLO}$

CTEQ-W/Z 10 / 17

- 3 ≥ >

э

Matrix Element-Parton Shower Matching SM, PR JHEP 0405:040,2004, SM, JH, JC in progress

Testing Different Predictions

- Matching scheme needed to make inclusive predictions with hard emissions
- Pseudoshower Method (ME-PS) reweights matrix elements to look like parton showers where they should. Motivated by Catani et al., but more flexible and tuned to Pythia, Herwig, etc.

CTEQ-W/Z 11 / 17

Pseudo-Shower Method

- Generate W + N parton events, applying a cut $p_{T_{cut}}^2$ on shower p_T^2 (p_T^2 for ISR, $z(1-z)m^2$ for FSR)
- 2 Form a p_T^2 -ordered parton shower history
- **3** Reweight with $\alpha_s(p_T^2)$ for each emission
- Add parton shower and keep if no emission harder than p²_{T cut}: (save this event)
- Semove softest of N partons, fix up kinematics, add parton shower and keep if no emission harder than $p_{Tsoftest}^2$
- Ontinue until no partons remain, or an emission is too hard
- If not rejected, use the saved event

Why it works

- For each *N*, PS does not add any jet harder than $p_{T_{cut}}^2$
- Can safely add different *N* samples with no double-counting
 - Apply looser rejection on highest N
- Pseudo-showers assure correct PS limit, while retaining hard emissions
 - Interpolates between limits

bb Modifications

- Apply no cuts on $b\bar{b}$ pair in ME
 - Efficient generation of HF
 - "exact" kinematics
- When $b\bar{b}$ pair is removed from PS history, skip the pseudoshower
 - ME entirely (no Sudakov)

• Use
$$\alpha_s(\frac{1}{4}m^2)$$
 for weight

CTEQ-W/Z 13 / 17

Matched Datasets have a systematically larger rate and different shape

Truncated Datasets contain only $Wb\bar{b} + Wb\bar{b}j$

Image: A marked and A marked

HO topologies modify shape

Wjj Matched Datasets have less variation with cutoff

Matched normalization here is smaller (no skipped Sudakov)

- 4 三 ト - 4

Stiffer shape (HO topologies)

MCFM vs MEPS

MCFM vs MEPS

Matched Datasets have consistently steeper slopes (note: MCFM steeper than LO)

Truncated Datasets contain only $Wb\bar{b} + Wb\bar{b}j$

Slopes more consistent with MCFM

▶ < 돌 > Ξ CTEQ-W/Z 16 / 17

Conclusions

We need to understand Not-Top

- MCFM and Matched ME-PS predictions allow us to study methods for determining the ratio R = Wbb/Wjj
- MCFM already indicated a stiffer dR/dH_T spectrum than "standard" matching methods

Campbell and Huston, confirmed here

- Pseudo-shower predictions are significantly stiffer than MCFM
 Topologies up to Wbbjjj are included and affect the dR/dH_T tail
- Many questions remain
 - Which distributions are the most important for testing different predictions?
 - Is there a kinematic difference between the different components of Not-Top? Can we discriminate *Wbb*, *Wjj* and *Wcj*?

Stephen Mrenna (FNAL)

▶ ◀ Ē ▶ Ē ∽ ९ ୯ CTEQ-W/Z 17 / 17