Observation of a "cusp" in the decay $K^{\pm} \rightarrow \pi^{\pm} \pi^{\circ} \pi^{\circ}$

Preliminary analysis of 25.8 x 10⁶ fully reconstructed $K^{\pm} \rightarrow \pi^{\pm}\pi^{\circ}\pi^{\circ}$ decays (~ 100 times more than the largest sample from any previous experiment)

NA 48/2 has very good resolution on the $\pi^{\circ}\pi^{\circ}$ invariant mass

- Event selection and reconstruction
- $\pi^{\circ}\pi^{\circ}$ invariant mass resolution
- $\pi^{\circ}\pi^{\circ}$ invariant mass distribution
- Interpretation and fits

L. DiLella, 2 May 2005

Event selection

- At least one charged particle with momentum *p* > 5 GeV/c
- At least 4 photons with $E_{\gamma} > 3$ GeV detected in the Liquid Krypton (LKr) calorimeter
- Geometrical cuts to eliminate detector edge effects (near beam tube and near outer edges of drift chambers and LKr calorimeter)
- Distance between photons at LKr > 10 cm
- Distance between photons and charged particle at LKr > 15 cm

Liquid Krypton electromagnetic calorimeter 13248 projective cells, 2 x 2 cm² Energy resolution: $\frac{\sigma(E)}{E} = \frac{0.032}{\sqrt{E}} \oplus \frac{0.09}{E} \oplus 0.0042$ $\sigma(E) \approx 142 \text{ MeV for } E = 10 \text{ GeV}$

Space resolution:

$$\sigma_x = \sigma_y = \frac{0.42}{\sqrt{E}} \oplus 0.06 \text{ cm}$$

 $\sigma_x = \sigma_y \approx 1.5 \text{ mm for } E = 10 \text{ GeV}$

(*E* in GeV)

Reconstruction of the $\pi^{\circ}\pi^{\circ}$ **pair**

Among all possible $\pi^{\circ}\pi^{\circ}$ pairs select the pair with minimum difference $|\Delta z| = |z_{ik} - z_{lm}| < 500 \text{ cm}$ $(i, k \neq l, m)$

Take middle point between the two *z* coordinates as the common origin of the two π° (this choice gives the best $\pi^{\circ}\pi^{\circ}$ invariant mass resolution)

Difference Δm between $\pi^{\pm}\pi^{\circ}\pi^{\circ}$ invariant mass and PDG K mass value $m_{\rm K}$

Select events with $|\Delta m| < 0.005$ GeV Fraction of events with wrong photon pairings ~ 0.25% (as estimated from MonteCarlo simulation)

Event acceptance and $\pi^{\circ}\pi^{\circ}$ invariant mass resolution (from MonteCarlo simulation)

$π^{\circ}π^{\circ}$ invariant mass resolution (σ) versus M_{00}^{2} (from MonteCarlo simulation)

 $\sigma \approx 0.5$ MeV at $M_{00} = 2m_+$

Experimental M_{oo}^2 distribution for 25.82 x 10⁶ K[±] $\rightarrow \pi^{\pm} \pi^{\circ} \pi^{\circ}$ decays

Experimental M_{oo}² **distribution** "Zoom" on the cusp region

Fits to the experimental M₀₀² distribution METHOD

- Generate theoretical M_{oo}^2 distribution G_i (420 bins of 0.00015 GeV²)
- From MonteCarlo simulation derive 420 x 420 matrix T_{ik}
 T_{ik} = probability that an event generated with M_{oo} in bin *i* is detected and measured in bin *k* (T_{ik} includes both acceptance and resolution)
- Produce "reconstructed" M_{oo}^2 distribution R_k :

$$\mathbf{R}_k = \sum_i \mathbf{T}_{ik} \mathbf{G}_i$$

• Fit distribution R_k to experimental M_{00}^2 distribution

Log(T_{*ik*}) (from MonteCarlo simulation)

Fit interval: $0.0741 < M_{00}^2 < 0.0967 \text{ GeV}^2$

• Fit using modified PDG prescription for decay amplitude:

where:

$$A_{+00} = 1 + \frac{1}{2}g_{o}u + \frac{1}{2}h'u^{2}$$

$$u = \frac{M_{00}^{2} - s_{0}}{m_{+}^{2}} \qquad s_{0} = \frac{m_{K}^{2} + m_{+}^{2} + 2m_{0}^{2}}{3}$$

Very bad fit: $\chi^2 = 13574 / 148$ d.o.f.

Move lower limit of fit interval 13 bins above cusp point

Reasonable fit: $\chi^2 = 120 / 110$ d.o.f.

Data – fit comparison shows important "deficit" of events below cusp point

$\Delta \equiv (data - fit) / data versus M_{00}^{2}$

N. Cabibbo Determination of the a_0-a_2 Pion Scattering Length from K⁺ $\rightarrow \pi^+\pi^\circ\pi^\circ$ decay Phys. Rev. Letters 93 (2004) 121801

Only one additional free parameter: $(a_0 - a_2)m_+$

 $\chi^2 = 217 / 147$ d.o.f.

N. Cabibbo and G. Isidori: Pion – pion scattering and the $K \rightarrow 3\pi$ decay amplitudes JHEP03 (2005) 021

... and also two-loop and three-pion diagrams

One additional free parameter: a_2m_+ Decay amplitude depends on both Dalitz plot variables – for each value of M_{00}^2 set the other variable to its average value

 $\chi^2 = 156 / 146$ d.o.f.

Search for formation of $\pi^+\pi^-$ atoms ("pionium") in K⁺ $\rightarrow \pi^+\pi^+\pi^-$ decay followed by charge exchange $\pi^+\pi^- \rightarrow \pi^\circ\pi^\circ$

Repeat the fit excluding 7 bins centred at $M_{00} = 2m_{+}$

 $\chi^2 = 141 / 139$ d.o.f.

Excess of events in excluded bins \Rightarrow evidence for pionium Statistical significance ~2.5 σ

Prediction of pionium formation in $K^+ \rightarrow \pi^+ \pi^+ \pi^-$ decay (Z.K. Silagadze, hep-ph/9411382 v2 24 Nov 1994) $\frac{K^+ \rightarrow \pi^+ + pionium}{K^+ \rightarrow \pi^+ \pi^-} \approx 7.4 \times 10^{-6}$

(recalculated by using Silagadze's formulae and more recent $K^+ \rightarrow \pi^+ \pi^- data$)

Fix pionium contribution at theoretical prediction

 $\chi^2 = 150 / 146$ d.o.f.

Pionium contribution as additional free parameter

 $\chi^2 = 149 / 145$ d.o.f. **Pionium contribution** = 1.7 ± 0.6 (Theoretical prediction = 1.0) **Preliminary result presented at seminars and Winter conferences based on fit with pionium contribution = theoretical expectation**

 $(a_0 - a_2)m_+ = 0.281 \pm 0.007$ (stat.)

Preliminary, <u>conservative</u> estimate of systematic uncertainties:

TOTAL (adding in quadrature)	0.014
From K ⁺ / K ⁻ difference	0.006
 From dependence on location of decay vertex along beam axis acceptance 	0.009
 Varying min. distance between photons and charged particle at LKr calorimeter 	0.004
 Excluding pionium region from fit interval 	0.008

No surprises from the other fitting parameters:

- a₂ consistent with ChPT prediction
- g_0 , h' in reasonable agreement with previous experiments

Statistical errors on the other fitting parameters :

 $\sigma(g_0) = \pm 0.004$ $\sigma(h') = \pm 0.009$ $\sigma(a_2m_+) = \pm 0.018$

Studies of systematic uncertainties on these parameters still to be done \Rightarrow no best fit values presented yet Systematic uncertainties on $(a_0 - a_2)m_+$ are expected to become comparable to the statistical error, or even smaller, from further analysis Theoretical uncertainties on $(a_0 - a_2)m_+$

Estimate by Cabibbo and Isidori : ±0.014 (±5%) (from missing radiative corrections and higher-order diagrams) **MOST LIKELY THE DOMINANT UNCERTAINTY AT THE END OF THE DATA ANALYSIS**

Are these uncertainties reduced by excluding from the fit the pionium region ?

Note additional uncertainty from ratio of weak decay amplitudes $R = A (K^+ \rightarrow \pi^+ \pi^-) / A (K^+ \rightarrow \pi^+ \pi^\circ \pi^\circ)$

•From isospin invariance R = 2

R can be calculated by integrating PDG matrix elements over phase space and comparing result with ratio of branching ratios: *R* = 1.9 7 2 ± 0.023 (this procedure should be modified to take into account NA48/2 results on K⁺ → π⁺ π[°] π[°])

 ± 0.03 uncertainty on $R \implies \pm 0.003$ uncertainty on $(a_0 - a_2) m_+$

CONCLUSIONS

- A clear cusp has been observed by NA48 / 2 in the $\pi^{\circ}\pi^{\circ}$ invariant mass distribution from $K^{\pm} \rightarrow \pi^{\pm}\pi^{\circ}\pi^{\circ}$ decay at $M_{00} = 2 m_{+}$
- The new level of precision of the NA48 / 2 data requires a redefinition of the parameters generally used to describe K[±] → π[±] π[°] π[°] decay (e.g., PDG 2004)
- This cusp is the effect of $\pi\pi$ scattering in the final state, dominated by the charge exchange process $\pi^+\pi^- \rightarrow \pi^\circ\pi^\circ$.
- The final K[±] → π[±] π[°] π[°] decay sample collected in 2003 04 will contain ~10⁸ events
- We need theoretical guidance to extract values of the ππ scattering parameters from these data with the best possible precision